D816F Programiming i Rust

<) Pascal

Van Dam
L orchestrate your success!" #K85Mastery

Author(s):
©PASCALVANDAM.COM - 2025

All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means, electronic or me-
chanical, including photocopying, recording, or by an information storage and retrieval system,
without permission of "PASCALVANDAM.COM".

Although every precaution has been taken to verify the accuracy of the information contained herein,
"PASALVANDAM.COM” assume no responsibility for any errors or omissions. No Liability is assumed for damages that may
result from the use of information contained within.

1 Rust Setup

2 Setting up an IDE for Rust
3 Introduction to Rust
4 Rust Strings

5 Borrowing

6 Arraysin Rust

7 Conditionals

8 Loopsin Rust

9 Enums in Rust

10 Structs in Rust

11 Vectors in Rust

12 Hashmaps in Rust

13 Functions in Rust

14 Methods in Rust

15 Traits

16 OOP in Rust

17 Lifetimes in Rust

18 Errorhandling in Rust
19 Closures in Rust

20 Iterators in Rust

21 Generics in Rust

22 Dynamic Dispatch in Rust
23 Unit testing in Rust

24 Benchmarking in Rust

Contents:

1

27

29

33

35

39

41

43

45

47

49

51

53

55

57

59

61

65

69

71

73

75

25 Organization of a Rust project

79

PVD816F Programming in Rust, Release 260625

PVD816F Programming in Rust, Release 260625

Rust Setup

1.1 Introduction

In this lab we will setup the Rust SDK and write and run the famous helloworld program in Rust.

1.1.1 Requirements

To be able to execute this lab, you need one Ubuntu Noble 24.04 (LTS) or compatible machine. The virtual machines must be
provided with at least 4 GB Memory and 2 CPUs.

Furthermore, you need an internet connection to be able to install the Rust SDK and to install additional Rust crates when
needed.

® N o v A w N e

PVD816F Programming in Rust, Release 260625

1.1.2 Installing the Rust SDK

Rust offers a handy tool called that is used to install the Rust SDK and to keep it up-to-date. Use the following
command as your normal unprivileged user to install the rustup tool and to install the Rust SDK.

Listing 1: Linux

[~ $> curl --proto '=https' --tlsvi.2 -sSf https://sh.rustup.rs | sh

Listing 2: Mac/0SX
[~ $> curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh

Listing 3: Windows

Download and execute rustup-init.exe from https://static.rust-lang.org/rustup/dist/i686-pc-
—windows-gnu/rustup-init.exe

When asked for to choose an installation option, please select
After the has finished, please and again to activate the Rust environment.

Now it’s time to validate our Rust SDK installation:

[~ $> rustc --version

This reports the version of the Rust compiler.

You should be able to get a response like:

rustc 1.93.0 (254b59607 2026-01-19)

Kindly create a directory called and change into it:

[~ $> mkdir temp-rust
[~ $> cd temp-tust

In this directory, create a program callled helloworld.rs with the following content:

Listing 4: helloworld.rs
// helloworld.rs

// This is the main function
fn main() {

println!(”Hello World!”);

}

You can compile the program using the command:

[~ $> rustc helloworld.rs

This will produce a binary called which can be executed like this:

[~ $> ./helloworld

Observer the size of the binary using the command.

[~ $> 1s -alh helloworld

-TwxTwxr-x 1 pascal pascal 3.8M Oct 8 11:57 helloworld

4 Chapter 1. Rust Setup

PVD816F Programming in Rust, Release 260625

The binary is setting you back on 3.8MiB of storage. A beefy binary, don’t you think? There’s a lot of extra information
compiled in this binary. We can slim it down for now using the UNIX/Linux utility. Later in the course we will use
Rust tool to make a binary for us.

[~ $> strip helloworld
[~ $> 1ls -alh helloworld

-TwxTwxr-x 1 pascal pascal 315K Oct 8 12:01 helloworld

We have stripped it down to 315KiB, that’s better.

Now, let’s remove the directory and it’s contents as we are going to use another way to build Rust programs a little later in
this lab:

[~ $> rm -rf temp-rust

1.1.3 Additional rustup functionality

With we can do more things:

. Update the installed release to the latest version

. Update itself ()

. Remove your installation of Rust

Add/Remove extra rust components

. Configure Rust to compile to different targets (Cross-compiling)

. Install a rust toolchain from default, beta or nightly channels

N oA~ W N e

. Choose which toolchain default, beta or nightly should be used

Cross-compiling is a different module in our course, so we will save that for later.

Let’s now first make sure that is of the latest version:

[~ $> rustup self update

We will either get a conformation that we do have the latest version, or that a new version is going to be installed.

Next, let’s make sure our toolchain in the default channel is fresh:

[~ $> rustup update
The tool will either confirm that the toolchain is up-to-date, or upgrade to the most recent version in the stable
channel.

For Rust extensions in editors like Vim, Neovim or VScode, we need to have the so called installed. Let’s
check which components are available for installation and install the if it’s available for our platform.

First, list the available components with the following command:

[~ $> rustup component list

The components that are listed in BOLD are already installed. We need to install
given that we are on Linux on an x86_64 architecture.

[~ $> rustup component add rust-analyzer-x86_64-unknown-linux-gnu
BTW; the other components listed give an indication how many platforms are currently supported by Rust, and the list is still
growing.

To remove your rust setup you can use the command. But we are not going to practice that now,
we have a whole course ahead of us where we need this Rust environment.

1.1. Introduction 5

PVD816F Programming in Rust, Release 260625

1.1.4 Cargo

We almost never invoke the compiler ourselves. Instead Rust provides us with the . This tool helps us
performing a lot of tasks like:

. Setting up a work environment for our new Rust program
. Compiling/building a Rust program in debug mode

. Compiling/building a Rust program in release mode

. Testing a Rust program

. Formatting a Rust program (pretty printing)

N A W N

. Linting our Rust program using Clippy

But also some of the more advanced tasks like our Rust program for different architectures.
Detailed information about the use of will follow in the rest of the course.

First let’s use to setup the environment for our program. For this we use the command.

[~ $> cargo init helloworld

A new directory will be created with the following contents:

In this directory you will see that the following contents have been created:

helloworld

t Cargo.toml
sTC

(- main.rs

The Cargo.toml is the so called file and contains all the info needed for building the program.

Take a look at the contents of the file:

Listing 5: Cargo.toml

[package]
name = ”helloworld”
version = ”70.1.0”

edition = ”2021”

See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.
—html

[dependencies]
In the section you can see the name of the program/package, called helloworld. The version is the version of our
program/package. The parameter states the edition of Rust our program is supposed to be compatible with, in this

case the Rust 2021 edition.

There are no dependencies yet, but if they were there, you would be able to find them underneath the
section.

In the directory you will find a predefined file containing functionality.

Listing 6: helloworld.rs

fn main() {
println!(”Hello, world!”);
}
We can build the program by switching to the helloworld () directory and, in this directory, using the

command like this:

6 Chapter 1. Rust Setup

PVD816F Programming in Rust, Release 260625

[~ $> cargo build

The resulting output will be something like this:

Compiling helloworld v0.1.0 (/home/pascal/Courses/pvd816-rust/labs/source/code/helloworld)
Finished dev [unoptimized + debuginfo] target(s) in 0.89s

Please note that you can see that the executable gets run from another directory

Check whether you can file the executable in the directory.

With the command the binary will be build from the source and run directory. As we already have compiled our
program in the previous step, the compilation step will be omiited.

[~ $> cargo run

As seen above, the default build will build an executable suitable for debugging, but it’s very large. To build for an optimized
executable for production, we use the so called ‘release’ mode of the command like this:

[~ $> cargo build --release

Compiling helloworld v0.1.0 (/home/pascal/Courses/pvd816-rust/labs/source/code/helloworld)
Finished release [optimized] target(s) in 0.42s

You can find the resulting optimized binary in the directory. Here, doesn’t mean a signifi-
cantly slimmer binary. Optimized for release means that in contrast to the debug build, the compiler will take more effort in
optimizing for performance whilst taking a longer time to compile. The builds in mode (the default mode) will result
in less optimized executables but faster compilation times.

To clean up the build environment (removing build artifacts), one can use the following command:

[~ $> cargo clean

1.2 Summary

+ The tool is used to install the Rust SDK and maintain it.
+ The tool is used to scaffold our Rust projects, build, analyze, test and and run Rust code.
+ The toml file contains information about our project.

1.2. Summary 7

PVD816F Programming in Rust, Release 260625

8 Chapter 1. Rust Setup

Setting up an IDE for Rust

2.1 Introduction

In this lab we will help you setup your editor for programming in Rust. As there’s phletora of editors and Integrated Develop-
ment Environments (IDE) out here we only focus on two of them and make a mention of a third one.

We will discuss setting up:

+ Vim
+ VScode

PVD816F Programming in Rust, Release 260625

21.1 VIM

is an improved version of the trusted UNIX VI editor. It has evolved into a complete IDE and has a loyal flock of fol-
lowers, but there are also people that have difficulties getting a hold of it. A pro of is that you can literally get if for any
environment and it’s very lightweight. It doesn’t require a graphical environment and it works easilly in resource deprived en-
vironments. Currently, there are many plugins available that make programming in Rust with VIM as your editor a pleaseant
and productive experience.

We assume you have installed.

To install a set of plugins for Rust in Vim, kindly execute the following recipe:

[~ $> git clone https://thegitcave.org/pascal/pvd836-rust-vim.git

[~ $> curl -sLO install-node.vercel.app/lts

[~ $> sudo sh ./lts -y

[~ $> cp itg836-Tust-vim/vimrc ~/.vimrc

[~ $> vim +'PlugInstall --sync' +ga

[~ $> vim +'CocInstall coc-rust-analyzer coc-yaml coc-json -sync' +qga

It might be the case that you need to hit the key after you have executed the 5th line due to a at that time missing
color-scheme.

2.1.2 VScode

For VScode from Microsoft, it is important to install the proper ‘extensions’ for Rust. It is assumed you have VScode already in-
stalled on your platform. To install the advised extensions for rust please use the following commands from the commandline
or look up the extensions in the VScode themselves:

[~ $> code --install-extension vadimcn.vscode-11ldb

[~ $> code --install-extension serayuzgur.crates

[~ $> code --install-extension bungcip.better-toml

[~ $> code --install-extension rust-lang.rust-analyzer

2.1.3 Jetbrains IDE

Many developers use Jetbrains set of IDEs for their programming jobs. For the Intelli] IDEA and CLion offerings you can
download an OpenSource Rust plugin. This plugin can be found at: https://www jetbrains.com/rust/download/

10 Chapter 2. Setting up an IDE for Rust

https://www.jetbrains.com/rust/download/

3.1 Introduction

In this lab, we will get a gentle introduction into the Rust language.

Introduction to Rust

11

O W N o U A W N e

10

o o w N e

PVD816F Programming in Rust, Release 260625

3.1.1 Requirements

To be able to execute this lab, you need to have your Rust environment setup with

3.1.2 A simple rust program

We are going to create a Rust program called . Of course, we are going to setup the environment for our code using
Cargo.

[~ $> cargo new greeting
[~ $> cd greeting

Using your favorite editor, replace the contents of the with the following program:

Listing 1: greeting

//
// greeting
//

fn greeting() {
println!(”Hello World!”);

}
fn main() {

greeting();
}
Here, // denote comments. is a function prefixed as such with fn, its body enclosed in curly braces. The
point of the program is the function.
In the body of function, you will see we will call . Mind that this is NOT a function
buta . It’s code that generates code. We will use these a lot in Rust programming and discuss how to create
them ourselves later in the course. Anyhow this macro enables us to print something to and finish it with
a

We already wrote that Cargo is a very useful tool while writing Rust programs. Now that we have written the code for our
program, let’s consult about any issues it has with our code, wether it is syntax errors or logical erros that
could cause the program to do the things we say, but not the things we want.

Run using the following command.

Listing 2: clippy
[~ $> cargo clippy

Listing 3: Output
Checking greeting v0.1.0 (/home/pascal/Courses/pvd816-rust/labs/source/code/greeting)
Finished dev [unoptimized + debuginfo] target(s) in 0.60s
In this case, has no constructive criticism on our code.

Let’s look at another example.

Listing 4: clippy-2

fn sum(a: 164, b: i64) — i64 {
return a + b;
}

fn main() {
let a: i64 = 10;
(continues on next page)

12 Chapter 3. Introduction to Rust

PVD816F Programming in Rust, Release 260625

(continued from previous page)

7 let b: i64 = 20;

8

9 let s = sum(a, b);

10 println! (”Sum of {} and {} is {}”, a, b, s);
n o}

We see some things we haven't learned yet, but that will be discussed in the the modules further in the course. Key is this
code will compile without any issue. Please try it.

Create the project with and put above program text in Then
build the program using

Listing 5: compile clippy-2

[~ $> cd clippy-2
[~ $> cargo build

Listing 6: Output

Compiling clippy-2 v0.1.0 (/home/pascal/Courses/pvd816-rust/labs/source/code/clippy-2)
Finished dev [unoptimized + debuginfo] target(s) in 0.58s

The code is correct and if you execute it with , it will give you the expected and correct results. However, it is NOT
rust. Kindly consult with and see what constructive advise it has for us.

Listing 7: cargo clippy
[~ $> cargo clippy

Listing 8: Output

Checking clippy-2 v0.1.0 (/home/pascal/Courses/pvd816-rust/labs/source/code/clippy-2)
warning: unneeded ‘return‘ statement
--> src/main.rs:2:5

2 | return a+b ;
| AAAAAAAAAAAA help: remove ‘return': ‘a+b’

note: ‘#[warn(clippy::needless_return)]" on by default
= help: for further information visit https://rust-lang.github.io/rust-clippy/master/index.
—html#needless_return

warning: ‘clippy-2‘ (bin ”clippy-2”") generated 1 warning
Finished dev [unoptimized + debuginfo] target(s) in 0.27s

What is the meaning of this? Well, when we will learn how to use functions and expressions in generic we will learn that Rust
has the concept of tail expressions that can make Rust code more readable. What this means for a function is that if the last
line of a function is an expression and it’s not ended with a ;, the value of that expression will be used as the return value of

the function. E.g. no need to use the statement explicitly. The use of the statement at the end of a function is
correct and compilable Rust, however, it’s not Idiomatic Rust. Your friendly Code Coach Clippy helps you in crafting Idiomatic
Rust code.

You can ‘rewrite’ the code yourself or ask Clippy to do that for you:

Listing 9: clippy fixit
[~ $> cargo clippy --fix

Listing 10: Output

Checking clippy-2 v0.1.0 (/home/pascal/Courses/pvd816-rust/labs/source/code/clippy-2)

Fixed src/main.rs (1 fix)
(continues on next page)

3.1. Introduction 13

© @ N U A W N e

PVD816F Programming in Rust, Release 260625

(continued from previous page)

Finished dev [unoptimized + debuginfo] target(s) in 0.20s

3.1.3 Displaying output in Rust

To learn Rust or any language, it is very handy to know how to print output on the screen to see what results our programs

produce. As seen in a previous lab Rust introduces the macro for this.
In this section we will learn how to work with this macro to produce orderly output from out Rust programs.
Kindly create a new project called with and put the following program text in

Listing 11: printing-1

fn main() {
let a: i64 = 42 ;
let s = ”"Hello Rustaceans” ;
let h: u32 = 4207849484 ;
let fname = "Larry” ;
let lname = "Wall” ;
println!() ;
println!(”a == {}”,a) ;
println!(”s == {}”,s) ;
println! ("x == {:X}”,h) ;
println!(”x == {:x}”,h) ;

println!(”{0} {1}”,fname,lname)
3

The { } are so called placeholders that will be replaced with the value(s) of the expression(s) supplied. These placeholders
can also be , after which they refer to the first, second, third etc expression specified in the macro. This
macro can also do more nice things like formatting our output or printing it in a certain base like hex, octal, decimal, binary
etc. For more info please refer to: https://doc.rust-lang.org/rust-by-example/hello/print.html

Now let’s do an excercise. We are going to print a first and last name in normal and lastname, firstname order. Kindly use two
methods to accomplish this.

Create a new project called and use the following code as basis for your printing-2/src/main.rs file:

14 Chapter 3. Introduction to Rust

https://doc.rust-lang.org/rust-by-example/hello/print.html

PVD816F Programming in Rust, Release 260625

Listing 12: printing-2

// printing-2

fn main() {
let fname = ”Linus” ;
let lname = ”Torvalds” ;

// Add printing of firstname lastname and lastname, firstname in two ways
// 1) Using {} placeholders
// 2) Using positional placeholders {n}

/1
println!(”Change me!”)

}

3.2 Challenges: Mastering the macro

Before we dive into the unique aspects of Rust, let’s first get comfortable with the
bilities. Being able to produce well-formatted output will be invaluable as we explore more complex Rust concepts.

For each challenge, create a new Cargo project, write the code, and make sure it compiles and runs.

3.2.1 Challenge P1: Number bases — hex, octal, and binary

As systems programmers, we often need to inspect values in different number bases. The

specifiers for this.

Create a new project called

[~ $> cargo new fmt-bases
[~ $> cd fmt-bases

Put the following code in

Listing 13: fmt-bases/src/main.rs

fn main() {

}

let value: u32 = 255;

println!(”Decimal : {17, value);

println!(”Hex (lower) : {:x}”, value);
println!(”Hex (upper) : {:X}”, value);
println!(”0Octal : {:0}”, value);
println! (”Binary : {:b}”, value);

// With the 0x / Go / Ob prefixes using the # flag
println! (”Hex prefixed : {:#x}”, value);
println!(”Octal prefixed : {:#0}”, value);
println! (”Binary prefixed : {:#b}”, value);

Tasks:

1. Compile and run the program. Write down each line of output.

2. Change to (which is in hex). Run the program again and verify the hex output.

3. Add a new line that prints the value
see?

macro and its formatting capa-

macro has built-in format

as a 32-bit binary string with the 0b prefix. How many bits do you

3.2. Challenges: Mastering the macro

15

PVD816F Programming in Rust, Release 260625

Key takeaway

Use : %, :0,and :b for hex, octal, and binary output. The # flag adds the conventional prefix (0x, 0o, 0b). These are
essential when working with bitwise operations, memory addresses, or register values.

3.2.2 Challenge P2: Padding and alignment

When printing tables or aligned output, we need to control the width of our fields and the alignment of text within them.

Create a new project called fmt-align:

[~ $> cargo new fmt-align
[~ $> cd fmt-align

Put the following code in fmt-align/src/main.rs:

Listing 14: fmt-align/src/main.rs

fn main() {
// Right-aligned (default for numbers), width 10
println!(”Right : [{:>10}]”, "Rust”);
println! (”Left : [{:<103}]”, ”Rust”);
println!(”Center: [{:2103}]”, "Rust”);

// Padding with a custom fill character
println!(”Dashed: [{:—>10}]", "Rust”);
println!(”Dotted: [{:.>10}]”, "Rust”);
println!(”Stars : [{:%210}]”, "Rust”);

// Numbers with zero-padding

println!(”Zero-padded: [{:05}]”, 42);

println!(”Zero-padded: [{:08b}]”, 42);
}

Tasks:

1. Compile and run the program. Observe the alignment and fill characters.

2. Create a small “table” that prints the following three items right-aligned in a 15-character column with dot-fill:

Item...ooveennn Price
Keyboard......... €49
Monitor.......... €299
Mouse....oveeunnn €25

Hint: you can use two fields per line, one left-aligned and one right-aligned.

3. Print the numbers 1 through 16 in binary, each zero-padded to 8 bits wide. (Hint: usea for loop: for i in 1..=16

{... D

Key takeaway

Format specifiers <, >, and " control left, right, and center alignment. A fill character can be placed before the align-
ment symbol. Use 0 before the width for zero-padding numbers. Combining these gives you full control over tabular
output.

16 Chapter 3. Introduction to Rust

PVD816F Programming in Rust, Release 260625

3.2.3 Challenge P3: Floating point precision

When dealing with floating point numbers, controlling the number of decimal places is essential for clean output.

Create a new project called

[~ $> cargo new fmt-precision
[~ $> cd fmt-precision

Put the following code in

Listing 15: fmt-precision/src/main.rs

fn main() {
let pi = std::f64::consts::PI;

println! (”Default : {17, pi);

println!(”2 decimals : {:.2}”, pi);
println!(”5 decimals : {:.5}”, pi);
println!(”8 decimals : {:.8}”, pi);

// Combining width and precision
println! (”Padded : [{:>12.4}]7, pi);
println!(”Zero-padded: [{:012.4}]”, pi);

// Scientific notation

println!(”Sci (lower): {:e}”, pi);
println!(”Sci (upper): {:E}”, pi);
println!(”Sci precise: {:.3e}”, pi % 1000.0);

}
Tasks:
1. Compile and run the program. Note how different precision values affect the output.
2. Euler’s number is available as . Print it with exactly 10 decimal places.
3. The speed of light is approximately m/s. Print it in scientific notation with 2 decimal places.
4

. Create a small conversion table that prints temperatures from 0°C to 100°C in steps of 10, each with their Fahrenheit
equivalent formatted to 1 decimal place:

Celsius | Fahrenheit

The formula is:

Key takeaway

Use for N decimal places. Use : ¢ or :E for scientific notation. Width and precision can be combined as
where W is the total width and P is the number of decimal places. Rust pulls common mathematical constants from

3.2. Challenges: Mastering the macro 17

© @ N Y A W N e

PVD816F Programming in Rust, Release 260625

3.2.4 Challenge P4: Debug printing with and

The { } placeholder uses the trait, which is designed for user-facing output. But not every type implements
. The Debug trait, invoked with ,is available on most types and is invaluable for inspecting data structures during
development.

Create a new project called

[~ $> cargo new fmt-debug
[~ $> cd fmt-debug

Put the following code in

Listing 16: fmt-debug/src/main.rs

fn main() {
// Tuples don't implement Display, but they implement Debug
let point = (3, 7);
// println! (”{}”, point); // <« this would NOT compile!
println!(”Debug : {:?}”, point);

// Arrays
let primes = [2, 3, 5, 7, 11, 13];
println!(”Primes : {:?}”, primes);

// Vectors
let colors = vec![”red”, ”green”, "blue”];
println!(”Colors : {:?}”, colors);

// Pretty-print with {:#?}
let matrix = vec![
vec![1, 2, 3],
vec![4, 5, 6],
vec![7, 8, 9],
15
println!(”Matrix (compact) : {:?}”, matrix);
println! ("Matrix (pretty) :\n{:#?}”, matrix);

// Ranges
let range = 1..=10;
println!(”Range : {:?}”, range);

}

Tasks:

1. Compile and run the program. Compare the compact output with the pretty-printed output.
2. Uncomment line 4 (). What error do you get? What trait is missing?

3. Create a tuple with mixed types: and print it using . Does it
work?

4. The macro is another useful debugging tool. Try the following and observe how it differs from

let x = 53
let y = dbg!(x % 2) + 1;
dbg!(y);

What extra information does print that does not?

Key takeaway
Use for Debug output on types that don’t implement (tuples, arrays, vectors, etc.). Use for
pretty-printed Debug output. The macro is a handy alternative that prints the file, line number, expression,

and value — perfect for quick debugging.

18 Chapter 3. Introduction to Rust

PVD816F Programming in Rust, Release 260625

3.2.5 Challenge P5: Named parameters and expressions in printin!

The println! macro supports named parameters, which make complex format strings much more readable. You can also
use simple expressions directly inside curly braces (since Rust 1.58).

Create a new project called fmt-named:

[~ $> cargo new fmt-named
[~ $> cd fmt-named

Put the following code in fmt-named/src/main.rs:

Listing 17: fmt-named/src/main.rs

fn main() {
// Named parameters
println!(”{language} was released in {year}”,
language = ”Rust”,
year = 2015
)3

// Captured variables (Rust 1.58+)

let city = ”"Rotterdam”;

let country = ”"Netherlands”;
println!(”{city} is in the {country}”);

// Combining named parameters with formatting
println!(”Hex: {value:#06x}”, value = 255);
println! (”Bin: {value:#010b}”, value = 255);

// Numbered AND named can be mixed (though not usually recommended)
println! (”{0} loves {language}. Yes, {0} does!”,

"Ferris”,

language = "Rust”

)3

Tasks:

1. Compile and run the program.

2. Using named parameters, print the following sentence:
"My name is <name>, I am <age> years old and I live in <city>.”
Use named parameters in the format string and fill in your own details.

3. Create two variables width and height” of type f64 and calculate the area. Print the result using captured variables:
Rectangle: 12.50 x 7.30 = 91.25 m?

Use precision formatting to show 2 decimal places.

4. Why are named parameters more readable than positional ones in long format strings?

Key takeaway

Named parameters ({name = value}) and captured identifiers ({variable}) make format strings
self-documenting and less error-prone than positional arguments, especially when a format string has many
placeholders.

3.2. Challenges: Mastering the println! macro 19

N o o A w N e

PVD816F Programming in Rust, Release 260625

3.3 Challenges: Variables, Ownership & Friends

Now that we know how to create projects with Cargo, produce well-formatted output, and use Clippy, it's time to explore
the concepts that make Rust unique. The following 8 challenges will introduce you to immutable and mutable variables,
shadowing, ownership, and borrowing — the cornerstones of Rust’s safety guarantees.

For each challenge, create a new Cargo project, write the code, make sure it compiles and runs, and then answer the guestions.

Important:

Some of these challenges contain code that will not compile on purpose. That is the exercise! Read the compiler
error, understand what Rust is telling you, and fix the code.

3.3.1 Challenge 1: Immutable variables — the default

In Rust, variables are immutable by default. This means once you bind a value to a name, you cannot change it.

Create a new project called

[~ $> cargo new challenge-1
[~ $> cd challenge-1

Put the following code in

Listing 18: challenge-1/src/main.rs

fn main() {
let speed = 88;
println!(”The DelLorean needs to reach {} mph!”, speed);

speed = 100;
println!(”Actually, let's go {} mph!”, speed);
}

Tasks:

1. Try to compile the program with . What error do you get?
2. Read the compiler message carefully. Rust tells you exactly what is wrong and how to fix it.

3. Fix the program so that it compiles and runs. What keyword did you add?

Key takeaway

Variables in Rust are immutable by default. The compiler protects you from accidentally changing values you didn’t
intend to change. To opt-in to mutability, use

3.3.2 Challenge 2: Mutable variables — opting in

Now that you know about , let’s practice using mutable variables intentionally.

Create a new project called

[~ $> cargo new challenge-2
[~ $> cd challenge-2

Put the following code in

20 Chapter 3. Introduction to Rust

O ® N v A W N

=1

PVD816F Programming in Rust, Release 260625

Listing 19: challenge-2/src/main.rs

fn main() {

let mut countdown = 10;
println!(”Launch sequence initiated!”);

while countdown > 0 {
println! ("T-minus {}...

”

, countdown);

countdown -= 13
}
println! (7@ Liftoff!”);
}
Tasks:

1. Compile and run this program. Observe the output.

2. Now remove the keyword from line 2 and try to compile again. What error do you get?
3. Put back. Now add a line after that changes to -1 and prints with the new
value.

Key takeaway

Use when you know a variable needs to change. If you declare but never actually mutate the variable, Clippy
will warn you about it — try to verify!

3.3.3 Challenge 3: Shadowing — a new binding with the same name
Rust allows you to declare a new variable with the same name as a previous one. This is called shadowing. It is not the same
as mutation — you are creating a completely new binding that happens to reuse the name.

Create a new project called

[~ $> cargo new challenge-3
[~ $> cd challenge-3

Put the following code in

Listing 20: challenge-3/src/main.rs

fn main() {
let x = 53
println!("x is: {}”, x);

let x = x + 10;
println!(”x is now: {3}”, x);

let x = x % 23
println!(”x is finally: {}”, x);

// Shadowing can even change the type!
let x = ”I am no longer a number!”;
println!(”x says: {}”, x);

}

Tasks:

1. Compile and run the program. Write down each value of x.

3.3. Challenges: Variables, Ownership & Friends 21

PVD816F Programming in Rust, Release 260625

2. Notice that on line 12, x changes from an integer to a string. This is allowed with shadowing but would NOT be allowed
with mut. Try it: replace lines 2-12 with:

let mut x = 535
x = ”I am no longer a number!”;

What error do you get?

3. What is the difference between shadowing and mutability? Write your answer in your own words.

Key takeaway

Shadowing creates a brand-new variable that just reuses the name. Because it is a new Let binding, it can even
change the type. Mutation with mut can only change the value, never the type.

3.3.4 Challenge 4: Ownership with Copy types — integers are easy

Rust’s ownership model is one of its most important features. Every value in Rust has exactly one owner. When the owner
goes out of scope, the value is dropped (freed).

However, some simple types like integers, floats, booleans, and characters implement the Copy trait. For these types, assigning
to a new variable creates a copy of the value, and the original variable remains usable.

Create a new project called challenge-4:

[~ $> cargo new challenge-4
[~ $> cd challenge-4

Put the following code in challenge-4/src/main.rs:

Listing 21: challenge-4/src/main.rs

fn main() {
let a = 42;
let b = a; // a is COPIED because i32 implements Copy

println!(”a = {}”, a); // ¢ a is still valid!
println!(”b = {}”, b); // ¢ b has its own copy

let flag = true;
let another_flag = flag; // bool also implements Copy

println!(”flag = {}, another_flag = {}”, flag, another_flag);
}

Tasks:

1. Compile and run the program. Both @ and b are valid after the assignment. Why?
2. Add anew variable Llet c: f64 = 3.14; andassignitto Let d = c;.Print both c and d. Does it compile? Why?
3. What types in Rust implement Copy? (Hint: all the simple scalar types and tuples of Copy types.)

Key takeaway

Types that implement the Copy trait are duplicated on assignment. Both the original and the new variable are inde-
pendent and fully usable. Integers, floats, booleans, and characters are all Copy types.

22 Chapter 3. Introduction to Rust

N o o A w N e

PVD816F Programming in Rust, Release 260625

3.3.5 Challenge 5: Ownership with non-Copy types — the String move

Not all types are . Types that manage heap memory — like — use move semantics instead. When you assign
a to a new variable, ownership moves and the original variable becomes invalid.

Create a new project called

[~ $> cargo new challenge-5
[~ $> cd challenge-5

Put the following code in

Listing 22: challenge-5/src/main.rs

fn main() {
let greeting = String::from(”Hello, Rustacean!”);
let moved_greeting = greeting;

println!(”moved_greeting: {}”, moved_greeting);
println!(”greeting: {}”, greeting); // ¢ This line is the problem!
}

Tasks:

1. Try to compile this program. What error does the compiler give you?
2. The compiler says value . In your own words, explain what happened to on line 3.

3. Fix the program in two different ways:
a. Remove the use of after the move (simplest fix).

b. Use to create a deep copy of the String, so both variables own their own data.

Key takeaway
For heap-allocated types like , assignment moves ownership. The old variable becomes invalid. If you need
both variables to remain usable, explicitly the data.

3.3.6 Challenge 6: Clone — explicit deep copies

Let’s practice using to make deliberate copies of data that lives on the heap.

Create a new project called

[~ $> cargo new challenge-6
[~ $> cd challenge-6

Put the following code in

Listing 23: challenge-6/src/main.rs
fn main() {

let city = String::from(”Rotterdam”);
let city_backup = city.clone();

println!(”Original : {}”, city);
println! (”Backup : {}”, city_backup);

// Let's prove they are independent
let mut city = city; // shadow into a mutable binding
city.push_str(” Centraal”);

println!(”Modified : {}”, city);

(continues on next page)

3.3. Challenges: Variables, Ownership & Friends 23

13

14

O W N o Y A W N e

10

PVD816F Programming in Rust, Release 260625

(continued from previous page)

println!(”Backup : {}”, city_backup); // unchanged!
}
Tasks:
1. Compile and run the program. Verify that modifying does not affect
2. On line 9, we shadow into a binding. Why do we need here?
3. Change line 3 to (remove). What happens when you compile? Why?

4. Think about performance: why doesn’t Rust clone automatically for heap types?

Key takeaway

is an explicit opt-in to deep copying. Rust forces you to be deliberate about copies of heap data so you are
always aware of the performance cost. Compare this to languages where copies happen silently behind the scenes.

3.3.7 Challenge 7: Borrowing with references — reading without taking

Instead of transferring ownership, you can borrow a value by creating a reference with &. A reference lets you read (or write,
with) a value without taking ownership. The original owner keeps its data.

Create a new project called

[~ $> cargo new challenge-7
[~ $> cd challenge-7

Put the following code in

Listing 24: challenge-7/src/main.rs

fn print_length(s: &String) {
println!(”'{}' has {} characters”, s, s.len());

}
fn main() {
let message = String::from(”Rust is memory safe!”);
print_length(&message); // borrow message
print_length(&message); // borrow again — still valid!
println!(”I still own: {}”, message); // v message was never moved
}
Tasks:
1. Compile and run the program. Notice that is still usable after being passed to the function twice.
2. Change the function signature to (remove the & from both the parameter and the
calls on lines 8-9). What happens? Why can’t you call the function twice anymore?
3. Revert to using . Now, inside , try to add . What error do you get?
Why?

Key takeaway

An immutable reference &T lets you look at data without taking ownership. You can have as many immutable ref-
erences as you want at the same time. But you cannot modify data through an immutable reference — for that you
need

24 Chapter 3. Introduction to Rust

PVD816F Programming in Rust, Release 260625

3.3.8 Challenge 8: Mutable borrowing — one writer at a time

Rust allows mutable references with , but enforces a strict rule: you can have either one mutable reference or any
number of immutable references, but never both at the same time. This prevents data races at compile time.

Create a new project called

[~ $> cargo new challenge-8
[~ $> cd challenge-8

Put the following code in

Listing 25: challenge-8/src/main.rs

fn add_excitement(s: &mut String) {

s.push_str(”!!!"”);
}
fn main() {
let mut slogan = String::from(”Fearless concurrency”);
println!(”Before: {}”, slogan);
add_excitement(&mut slogan);
println! (”After : {}”, slogan);
}
Tasks:
1. Compile and run the program. Observe how the function modifies the original through a mutable reference.
2. The variable must be declared . Remove from line 6 and try to compile. What error do you get?
3. Now try to break the borrowing rules. Add the following code before the line:

let r1 = &slogan;

let r2 = &mut slogan;

println! (”{} {}”7, 11, 12);

What error does the compiler give you? What rule is being enforced?

4. Fix the code from task 3 by ensuring immutable and mutable borrows don’t overlap. (Hint: use 11 before creating 12.)

Key takeaway

gives you a mutable reference — you can modify the borrowed data. But Rust’s borrowing rules guarantee
that at any point in time you have either one or many &, never both. This is how Rust prevents data races
without a garbage collector.

3.4 Summary of the Rust rules

Here is a quick recap of the rules you have explored in these challenges:

3.4. Summary of the Rust rules 25

PVD816F Programming in Rust, Release 260625

Table 1: Rust Variables & Ownership Cheat Sheet

Concept Rule

Immutability Variables are immutable by default. Use to opt in to mutability.

Shadowing can be used again to create a new binding with the same name, even
with a different type.

Ownership Every value has exactly one owner. When the owner goes out of scope, the value is
dropped.

Copy types Simple scalar types (132, . , , etc.) are copied on assignment. Both
variables remain valid.

Move semantics Heap types like are moved on assignment. The original variable becomes
invalid.

Clone Use to explicitly deep-copy heap data when you need both variables to
remain valid.

Immutable borrowing

Mutable borrowing

borrows data without taking ownership. You can have many &T references at the
same time.
borrows data for modification. You can have only one atatime, and
no &T references may coexist.

These rules are enforced at compile time by the Rust compiler. There is no runtime overhead and no garbage collector. This
is how Rust achieves memory safety with zero-cost abstractions.

26

Chapter 3. Introduction to Rust

Rust Strings

4.1 Introduction

There are two datatypes for strings in Rust:

1. The string literal (&str) or slice.
2. The String as a vector of bytes, also called the string.

This lab will help you practive with the differences.

4.1.1 Requirements

A well-set-up Rust environment.

4.1.2 String literal or slice

Use string literals when you need to have a ‘view’ on a string. E.g. the string is not expected to expand.

So concatenation of two is not directly possible. You can do so however by using the macro which is closely
related to and friends. will return a string slice containing the formatted string.

Exercise: Create a Rust program that will will have the following 2 string literals:
let s1 = “Hello “; let s2 = “Rustaceans”;

Create a third string literal called s3 as sl concatenaded with s2 using the format! macro.

27

PVD816F Programming in Rust, Release 260625

4.1.3 String vector

A String is a different kind of beast. Strings need to be created like this:
let s1 = String::from(“Hello “) ; let s2 = String::from(“Rustaceans”) ;

Exercise: Create a Rust program that will make sl the value of String sl and String s2 concatenated.

28 Chapter 4. Rust Strings

Borrowing

5.1 Introduction

Understanding the concepts of , and are essential for programming in Rust. Recall that
Rust ensures memory safety by allowing code only to compile when it is able to ensure this safety. In this lab we will discover
and practice with and . We will discuss and practice later in this course.

5.1.1 Requirements

A well-set-up Rust environment and the memorization of the following Rust rules:

// Only owner owns the value ”There can only be one”

let owner = String::from(”There can only be one”)

// new_owner will now be the new owner
let new_owner = owner;

// owner is not 'valid' anymore

// a variable in a separate scope

{

(continues on next page)

29

I I N B

PVD816F Programming in Rust, Release 260625

(continued from previous page)

let example = String::from(”Here's a new scope”);

}

// Will not compile as 'example' is dropped as soon as it leaved the innerscope
// and is not availble in the outerscope.

print!(”{}”, example)

In Rust, the compiler utilizes the to analyze and verify whether no unsafe memory accesses would be made
and if so, breaks off the compilation of the code.

The safest program is the
program that doesn't compile.

~ ancient Rust proverb

5.1.2 Ownership
Create a new project called with the following code:

Listing 1: borrowing-1/main.rs

// ownership_1
fn main() {

let a: i64 = 42 ;
let b = a;

(continues on next page)

30 Chapter 5. Borrowing

o

O ® N o v A W N e

O ® N Y A W N e

o or W N e

PVD816F Programming in Rust, Release 260625

(continued from previous page)
println!(”a == {0} and b == {1}”,a,b) ;
}

Try to build/run it. Why does this compile, while the next example doesn’t?

Listing 2: borrowing-3/main.rs

// ownership_3
fn main() {
let a = String::from(”one”);

{

let b = a;

println!(”b == {0}”,b);
}

println!(”a == {0}”,a);

// println!(”a == {0} and b == {1}”,a,b) ;
}
The compiler reminds you in a friendly way that this does not compile:

The Rust compiler notifies us that the ownership of the value formerly owned by the variabele a has to the variable b.
Ergo, a is not valid anymore, it does not the value anymore and has no existence anymore.

And to make sure you truly understand the concept of in Rust, why does the next example also compile without
issues? They are both about ,are they not?

Listing 3: borrowing-2/main.rs
// ownership_2

fn main() {

let a = ”one”;
let b as;

println!(”a == {0} and b == {1}”,a,b) ;

5.1.3 Borrowing

is the concept of accesing the value of a variable without actually taking of it. In an analogy we are
lending the BMW of our friend, but we do not get to own it and we are expected to return it in exactly the same state as it is
now.

is referencing the variable and it’s only needed for datatypes that do not fit on the stack and need to be allocated
on the heap.

Let’s get the example with the ‘Strings’ compiling. We need to have variable b to reference variable a. We do this with the
operator like this:

Listing 4: borrowing-3/main.rs
// ownership_3a

fn main() {

let a = String::from(”one”);
(continues on next page)

5.1. Introduction 31

° ® N o

10

PVD816F Programming in Rust, Release 260625

// let b = a.clone() ;
let b = &a ;

println!(”a == {0} and b == {1}”,a,%b) ;
}

Now compile/build this program.

It should pose no problems.

(continued from previous page)

32

Chapter 5. Borrowing

Arrays in Rust

6.1 Introduction

This lab will help you practice with arrays and tuples in Rust

33

o or W N e

PVD816F Programming in Rust, Release 260625

6.1.1 Requirements

A well setup Rust environment

6.1.2 Exercise 1

Write a Rust program that uses an array of tuples that relate the following information:

1. Month name
2. Nr of days in the month
E.g. you should get an array of 12 elements which each element being a tuple like (“January”,31)

In your program print per month it’s name and the nr of days in it. If a boolean variable you should add 1 to
the days of the month of February.

6.1.3 Exercise 2

The following code defines a multi dimension array representing a Tic-Tac-Toe board. The board is initialized to all zeroes.
(Empty)
Listing 1: arrays-3/main.rs

fn main() {
let tictactoe = [[033];3];

// print_board(tictactoe);

}

Task: write code that will display the ‘value’ of each position on the board. The printed layout should represent the appearance
of the board.

Eg:

000
000
000

34 Chapter 6. Arrays in Rust

Conditionals

7.1 Introduction

This lab will help you practice with conditionals in Rust

35

O ® N Y A W N e

1

12

oo W N e

PVD816F Programming in Rust, Release 260625

7.1.1 Requirements

A well setup Rust environment.

7.1.2 Exercise 1

Listing 1: borrowing-3/main.rs
use std::io;
fn main() {

println! (”Enter a number: ”);
let mut guess = String::new();

io::stdin().read_line(&mut guess).expect(”failed to readline”);
let my_nr: i32 = guess.trim().parse().unwrap();

print!(”You entered {}”, my_nr);

}

Above program will request input from the user. In later modules we will explain how it works. This input is converted to a
number.

Kindly extend the program to:

1. Print that the nr is zero if a 0 is keyed in.

2. Print if the nr is odd or even

For this excercise use the if conditional statements

7.1.3 Exercise 2

The same tasks as for excercise 1, but now implement it using . Please do not forget the default

7.1.4 Exercise 3

Implement a basic calculator for the four primary arithmetic operations: addition, subtraction, multiplication, and division.
The user provides an operation in the form of a string (“add”, “subtract”, “multiply”, or “divide”) and two numbers. Your
program should then perform the requested operation on the numbers.

Steps:

1. Define an enum named Operation with variants for each of the 4 operations.
2. Implement a function that converts a string into the Operation enum.

3. Implement the calculator using a match expression to choose the appropriate arithmetic operation based on the enum
variant.

4. Test your calculator in the main function with a few examples.

E.g. to help you with some scaffolding:

Listing 2: calc/main.rs

enum Operation {
Add,
Subtract,
Multiply,
Divide,
(continues on next page)

36 Chapter 7. Conditionals

° ® N o

PVD816F Programming in Rust, Release 260625

(continued from previous page)

}

fn str_to_operation(s: &str) —> Option<Operation> {}
fn calculate(op: Operation, a: f64, b: f64) — f64 {}

fn main() {
let operation_str = ”add”;
let x = 5.0;
let y = 3.0;

match str_to_operation(operation_str) {
Some (op) => {
let result = calculate(op, X, y);
println!(”Result of {}ing {} and {}: {}”, operation_str, x, y, result);
}

None => println!(”Unknown operation: {}”, operation_str),

7.1. Introduction

37

PVD816F Programming in Rust, Release 260625

38

Chapter 7. Conditionals

Loops in Rust

8.1 Introduction

This lab will help you familiarize yourself with loops in Rust.

39

PVD816F Programming in Rust, Release 260625

8.1.1 Requirements

A well setup Rust environment

8.1.2 Exercise 1

Create a Rust program called loop-1 that will count from O to 100 and that will display all numbers that are divisable by 3 or 5.

8.1.3 Exercise 2

Create a Rust program called alphabet that will loop[through all 26 letters of the alphabet and print out the vowels.

8.1.4 Excercise 3
Given the unicode string: “® Dia dhuit, an Domhan! ®”; (With some artistic freedom loosely translated as Hello World in
Irish)

Kindly write a program in Rust to iterate over this string and print the individual characters in this string and insert extra
spaces. E.g, the result should be:

MDiadhuit,anDomhan!

40 Chapter 8. Loops in Rust

Enums in Rust

9.1 Introduction

The data type enum plays a special role in Rust. They are more powerful then the enums we know from other languages like
C and C++. They play an important part in error handling and getting optional results from functions.

This lab will have you practice with enums in Rust.

41

PVD816F Programming in Rust, Release 260625

9.1.1 Requirements

A well setup Rust environment, at least Rust 2021 edition

9.1.2 Exercise 1

Objective: Understand the basic usage of enums in Rust by implementing days of the week.

1. Define an enum named Day that represents the days of the week. Each day should be a variant in the enum.
2. Create a variable for each day of the week and assign the corresponding variant of the Day enum to it.

3. Using a match expression, print a small piece of information or activity you might do on each day. For instance, “Mon-
day is Rust practice day”

9.1.3 Exercise 2

Objective: Learn to use enums in Rust that hold data by modeling a simple coffee ordering system.

Scenario: Customers can order coffee in different sizes and specify if they want milk or not. The size can be “Small”, “Medium”,
or “Large”, and milk can be “None”, “Regular”, or “Soy”.

Steps:

1. Define the CoffeeSize and MilkOption enums:

2. Create a sample order like this:

let my_order = CoffeeOrder::Order {
size: CoffeeSize::Medium, milk: MilkOption::Soy,

1. In the main function describe this order using a match expression.

E.g. possible output with above order:

“You've ordered a Medium coffee with soy milk.”

42 Chapter 9. Enums in Rust

10

Structs in Rust

10.1 Introduction

This lab will help you practice with s tructs in Rust. The data type s truct plays an important role in Rust by create custom
data types grouping together related pieces of data. Not only for structuring data but like enums we will see later in the course

that we can implement methods on them, forming the base of OOP in Rust.

43

PVD816F Programming in Rust, Release 260625

10.1.1 Requirements

A well setup Rust environment, at least Rust 2021 edition.

10.1.2 Exercise 1

1. Define a Persons struct with fields first_ name, last_name and age. Choose appropriate data types for the field
2. Instantiate the struct in main (let person = Person({...};)
3. Print the contents of these structs

4. Print adult if the person has reached the adult age

10.1.3 Exercise 2

In this exercise we are going to practice with embedded structs.

1. Define an Employee struct
An Employee should have:
+ Afirst name
+ Alast name
+ Ajobtitle
2. Define a Department struct
A Department should have:
+ A department name
+ Alist of the 5 (fixed) employees in that department

3. Instantiate the Department struct and 3 Employee structs.

4. Print the department info (all fields) and the Employees in that department

44 Chapter 10. Structs in Rust

11

Vectors in Rust

11.1 Introduction

This lab will help you practice with defining vectors, iterating over them and updating the elements in them

45

PVD816F Programming in Rust, Release 260625

11.1.1 Requirements

A well setup Rust environment

11.1.2 Exercise 1

Objective: practice with a vector of strings

1. Create a vector containing the words “hello”, “world”, and “rust”.
2. Convert the vector of words into a single string where words are separated by a space.

3. Print this string

11.1.3 Exercise 2

Write a Rust program that declares and initializes a vector of i64. Populate this vector with the nrs from 0 to 100.
After that:

Iterate over the elements in the vector and double the element’s value if the value is odd and square the elements value when
the original value is even. Lastly, print out each value in the vector including their element nr;

E.g:

Element O -> 0 Element 1-> 2
etc.

11.1.4 Exercise 3

Like the Gophers the Rustlings would like to run their own bookstore, but then full of books about Rust. They need to manage
the inventory of books. Each book will have a title, author, and stock count.

Objective:

Create a basic inventory management system to add books, check stock, and sell books.

1. Structures:
Book: Represents a book with a title, author, and stock count. Inventory: Represents the bookstore’s inventory. It uses
a vector to hold the collection of books.

2. Actions/functions:

Add a book to the inventory. Check the stock of a specific book by title. List the entire inventory Sell a book
(decrease its stock by 1).

46 Chapter 11. Vectors in Rust

12

Hashmaps in Rust

12.1 Introduction

This lab will help you practice with hashmaps

47

PVD816F Programming in Rust, Release 260625

12.1.1 Requirements

A well setup Rust environment

12.1.2 Exercise 1

Write a Rust program that declars and initializes a hashmap . The hashmap should map student names to
programming languages. Key of the hashmap is the name of the student, value is the name of the programming languages.

1. Populate the hashmap with the following records:
Fred,Golang Alice,Perl] Kjell,Python Jarmo,Rust Sander,Zig

2. Print out all the elements in the hashmap.

3. Add a new student and language (yours to choose).
Check before you add the student if he’s not already in the hashmap. If so, print a message.

4. Sander decides to join the Rust developers. Kindly change his programming language to Rust.

5. Extra credit:
Iterate over the HashMap and convert all programming languages to uppercase.

48 Chapter 12. Hashmaps in Rust

13

Functions in Rust

13.1 Introduction

In this lab we will practice with writing functions in Rust.

49

PVD816F Programming in Rust, Release 260625

13.1.1 Requirements

A well setup Rust environment

13.1.2 Exercise 1

1. Write a function that returns the square root of a f64 and returns a f64. Call this function in the main body.

2. Adapt the functions so it will refuse to calculate the square root if the argument < O Use the Result enum to return an
error condition or result.

After calling the function, determine wether you have a valid result or an error and print this on the screen.

13.1.3 Exercise 2

1. Write a recursive funtion that will calculate the n-th fibonacci nr
Fib(1) =1Fib(2) =1
Fib (n) = Fib(n-1) + Fib(n-2)
Call the recursive function in the main() part.

50 Chapter 13. Functions in Rust

14

Methods in Rust

14.1 Introduction

This lab focusses on using methods on structs in Rust.

51

PVD816F Programming in Rust, Release 260625

14.1.1 Requirements

A well setup Rust environment.

14.1.2 Exercise 1

Define 3 structs like this:

1. Square -> having side: f64 as it’s only atttribute
2. Triangle -> having sidel, side2, side3 all of type f64 as attributes

3. Circle -> having radius as it’s only attribute

Write for each of these 3 structs a static method called New so we can instantiate new Squares, Triangles and Circles

14.1.3 Exercise 2

Write the following 2 methods for each of the 3 structs:

1. Perimeter
This returns the perimeter for each of the shapes (square -> 4*side, triangle -> sum of all sides, circle 2*r*PI)

2. Area
This returns the area of each of the shapes

Test all the methods for the each of the shapes.

14.1.4 Exercise 3

1. Write for each of the shapes a method called that will alter the dimension of the shape. E.g. scale=2.0 will double
the sides of a square, etc.

2. Display the properties of the shapes to see if indeed they are ‘scaled’

52 Chapter 14. Methods in Rust

15

Traits

15.1 Introduction

This labs build upon the methods we programmed in the struct methods lab. In this part we will define a trait called Shape
that will define the methods perimeter and area. This means all structs/object that will implement these methods will fit the
Shape trait and we can make Generic functions for area and perimeter that will accept struct/objects that will implement the

Shape trait.

53

PVD816F Programming in Rust, Release 260625

15.1.1 Requirements

A well installed Rust setup.

15.1.2 Exercise 1

N U W N -

. Define a trait called Shape that requires the methods area() and perimeter() to be implemented.
. Define a generic function area that takes a Shape and returns its area.

. Define a generic function perimeter that takes a Shape and returns its perimeter.

Test the functions in your main() by calling it and passing it Circle, Square and Rectangle objects.

. Add the methods scale() to the trait and define a generic function scale that takes a Shape and will scale that Shape.

. Test the generic scale() function by passing it Circle, Square and Rectangle objects.

15.1.3 Exercise 2

. Design and implement a user type that represents temperature in degrees Celsius
. Design and implement a user type that represents temperature in degrees Fahrenheit
. Implement on both types the Display trait (method fmt) that will pretty print the degrees with the correct unit.

. Design and implement a method that will convert from degrees Celsius to Fahrenheit and use the right return type

Design and implement a method that will convert from degrees Fahrenheit to Celsius and use the right return type

. Test your program using the conversion method of C to F and vice versa. The right value and the right units should be

printed.

15.1.4 Exercise 3

. Design and implement a struct called Student that will have firstname, lastname, timestamp and a vector with all the

languages this person masters.

. Design and implement (not derive) the clone trait for this struct and add as extra functionality an update of the times-

tamp when the cloning is taking place.

. Test the cloning of the struct

54

Chapter 15. Traits

16

OOP in Rust

16.1 Introduction

In this lab we will practice with some of the OOP techniques in Rust

55

PVD816F Programming in Rust, Release 260625

16.1.1 Requirements

A well setup Rust environment

16.1.2 Exercise 1

1. Design and implement a datatype in Rust to hold a mathematical vector, e.g.
3.0|
15|
[-2.0]
The vector is one dimensional and has 3 nrs.
2. Implement the Display trait on this datatype to pretty print it. E.g. something like shown above.

3. Implement a method so that we can calculate the distance between 2 vectors using the Euclidean distance formula:
vector A(1,1,2) vector B(2,1,2)
Then the distance is sqrt((x1-x2)? + (yl-y2)? + (z1-z2)?)
4, Overload the * operator so that two vectors can be multiplied with each other (use the dot product to keep it simple)
5. Overload the * operator so you can multiply the vector with a scalar

6. Extra credit for adding overloading of **'for the Cross product of 2 vectors

56 Chapter 16. OOP in Rust

17

Lifetimes in Rust

17.1 Introduction

In this lab we are going to practice with lifetimes in Rust

17.1.1 Requirements

1. Afresh mind
2. Spirit
3. Coffee at arms length

57

©® N o A W N e

e I N R O

PVD816F Programming in Rust, Release 260625

17.2 Exercises

17.2.1 Exercise 1

Given the following ,which represents an author and a citation:

Listing 1: lifetime-struct/main.rs

struct AuthorAndExcerpt {
author: &str,
excerpt: &str,

}
fn main() {
let name = ”Hemingway”;
let text = ”The world breaks everyone, and afterward, some are strong at the broken_

—places.”;
let record = AuthorAndExcerpt::new_author_and_excerpt(name, text);

}

1. Modify the struct to use appropriate lifetime annotations so that it compiles correctly.

2. Implement a function new_author_and_excerpt that accepts two string slices: one for the author’s name and one for
an excerpt of their writing. The function should return an instance of

17.2.2 Exercise 2

Kindly make the following Rust program compile and work by bringing on proper lifetime annotations where applicable:

Listing 2: lifetime-fstruct/main.rs

struct Person {
name: &str,
}

fn make_person(name: &str) —> Person {
Person { name }

}
fn main() {
let name = ”Alice”;
let alice = make_person(name);
println!(”Name: {}”, alice.name);
}

17.2.3 Exercise 3

Implement a function that accepts two string slices with potentially different lifetimes and returns the slice that starts with
the character ‘a’ or the first slice if neither starts with ‘a’ However, because they can have different lifetimes, you need to
handle lifetimes carefully.

Listing 3: lifetime-func/main.rs

fn starts_with_a<'a, 'b>(s1: &'a str, s2: &'b str) — &'a str {}

fn main() {
let stringl = "example”;
let string2 = ”sample”;
let result = starts_with_a(stringl, string2);

58 Chapter 17. Lifetimes in Rust

18

Errorhandling in Rust

18.1 Introduction

In this lab we are going to practice error handling in Rust

18.1.1 Requirements

1. Afresh mind
2. Spirit
3. Coffee at arms length

59

PVD816F Programming in Rust, Release 260625

18.2 Excercices

18.2.1 Exercise 1

The first excercise concerns the quadratic equation solver again. Right now it doesn’t have proper errorhandling and just

displays a message when it detects that there will be no solutions. But it still returns a tuple of two zeroes. You are going
to transform this function so that is uses the type as output paramater/return type.
Step 1:

Please clone the rust-geq lab again.

[~ $> git clone https://thegitcave.org/pascal/rust-geq.git

Step 2:

Change the program in such a way that it returns a Result enum.

In Ok() cases it should return the tuple of solutions. In Err() cases it should return the String “This equation
does not have any real solutions”

Test this using a main function that calls this function. Also have the calling function (main) evaluate the result
act upon it. If it receives an error, it should mention that and ignore the results. If there’s no error, the solutions
are valid and should be printed.

18.2.2 Exercise 2

Create a program that will open a file called and read it in a string. Opening the file and reading the string will be
implemented in 2 different functions. If the file cannot be openend propagate the error to the calling function/main If the
string does not contain “Ferris” return also a different Error.

Have the calling function ‘handle’ the error.

60 Chapter 18. Errorhandling in Rust

19

Closures in Rust

19.1 Introduction

In this lab we will practice writing and using closures in Rust

61

©® N B W N e

[N I N R

PVD816F Programming in Rust, Release 260625

19.1.1 Requirements

A well setup Rust environment

19.1.2 Exercise 1

The following struct is given:

Listing 1: city/src/main.rs

struct City {
name: String,
province: String,
population: u64

}

fn main() {

let ¢ = City{ name: ”"Bergen”.to_string(), province: ”Limburg”.to_string(), population:_
5105 };
}

It contains fields name, population and province. Write a program in which you create a list of cities using a vector and create
a closure to sort this vector in ascending order on province and print the results.

You can use the following data to populate your list:

City Province Population

Bergen Limburg 5105

Nijmegen Gelderland 81002
Maastricht Limburg 63201
Amsterdam Noordholland 982102
Rotterdam Zuidholland 1030101

Next, sort the list on population in descending order and print the results.

19.1.3 Exercise 2

Currying is when a function with many arguments is being made more ‘accessible’ by having a helper function that has fewer
arguments by implementing default. Goal is to write such a ‘curried’ function in Rust:

Listing 2: currying/src/main.rs

fn add(a: u32, b: u32) — u32 {

a+b

}

fn main() {
let add5 = |x| add(5, x);
println! (”{}”,add5(5));

3

Above example shows you how to curry a addition function.

Now write a function greeting() that will have two parameters:
salutation -> that will contain for example “Gutentag”, “Buenas Dias” etc name -> That will contain the name of the
one to be greeted

62 Chapter 19. Closures in Rust

PVD816F Programming in Rust, Release 260625

The salutation should be a default “Hasta la vista” in the closure calling the function. E.g. your closure called should
only have name as argument and use ‘Hasta la vista’ as the default greeting part supplied to your greeting() function.

19.1. Introduction 63

PVD816F Programming in Rust, Release 260625

64

Chapter 19. Closures in Rust

20

Iterators in Rust

20.1 Introduction

In this lab we will practice writing and using closures in Rust

65

PVD816F Programming in Rust, Release 260625

20.1.1 Requirements

A well setup Rust environment

20.1.2 Exercise 1

1. Create a vector with the following nrs: [-4,2,3,1,-7,21,42,31,-7]

2. Print all the nrs using an iterator in the vector

3. Using a adapter iterator and a closure, double the even nrs and half the odd nrs.

4. Using the filter adapter, filter out the nrs that are divisable by 5

20.1.3 Exercise 2

We are now going to create an interator ourselves.

The example show an iterator that generates a prime on each call to next():

Listing 1: iter-prime/main.rs

pub fn is_prime(n: u64) —> bool {
if n<4 {
n>1
}elseifn%2==0 || n%3==0{
false
} else {
let max_p = (n as f64).sqrt().ceil() as ub4;
match (5..=max_p)
.step_by(6)
find(|p| n % p ==0 || n% (p + 2) == 0)

Some(_) => false,
None => true,

}

pub struct Prime {
curr: u64,
next: u64,

}

impl Prime {
pub fn new() — Prime {
Prime { curr: 2, next: 3 }
}

}

impl Iterator for Prime {
type Item = ub4;

fn next(&mut self) —> Option<Self::Item> {
let prime = self.curr;
self.curr = self.next;

Toop {
self.next += match self.next % 6 {
1 =>4,
- = 2,
1

if is_prime(self.next) {

(continues on next page)

66

Chapter 20. Iterators in Rust

41

42

44

45

46

47

48

49

50

52

53

55

56

PVD816F Programming in Rust, Release 260625

(continued from previous page)

break;
}
}
Some (prime)
}
}
fn main() {
let mut p = Prime::new();
for i in 1..=10 {
let _ = if let Some(v) = p.next() {
println! (”Prime {} = {}”, i, v);
}s
}
}
1. Create an iterator that generates Faculty nrs.
2. Create an iterator that generates Fibonacci nrs.
Test your iterators.
20.1. Introduction 67

PVD816F Programming in Rust, Release 260625

68

Chapter 20. Iterators in Rust

21

Generics in Rust

21.1 Introduction

In this lab we will practice writing Generic Functions in Rust

69

N o o A w N e

PVD816F Programming in Rust, Release 260625

21.1.1 Requirements

A well setup Rust environment

21.1.2 Exercise 1

1. Create a Generic function that will calculate the sum of all types of integers and floats in a vector.

2. Use proper Trait bounds to get your generic function working.

Listing 1: generics-1/main.rs

fn main() {
let v1 = vec![1,2,3,4,5,6,7,8,9];
let v2 = vec![1.2,28.1,1.2,9.1]1;

println! (”{}”,sum(&v1));
println! (”{}”,sum(&v2));

1. Tip; assinging the O value to start with can be tedious if you don’t now the type. You can use something like this:
Listing 2: generics-1a/main.rs
let mut sum: T = Default::default();

It provides a suitable default value for the type of var involved.
Test the Generic function.

Bonus: try to write a Generic function that will calculate the average of a vector of floats or integers. (non-trivial)

21.1.3 Exercise 2

For a real challenge create generic functions that will calculate sum, avg, variance and standard deviation of a vector of generic
types. E.g. the function should work for all integers and all floats.

70 Chapter 21. Generics in Rust

Dynamic Dispatch in Rust

22.1 Introduction

In this lab we will practice with Dynamic Dispatch / Trait Objects in Rust

7

PVD816F Programming in Rust, Release 260625

22.1.1 Requirements

A well setup Rust environment

22.1.2 Exercise 1

We are going to model a Zoo of Program Language mascots. In this zoo, there are different types of animals, and each animal
has its own saying. Your goal is to model this scenario:

1. Define a trait named Animal with a method named make_noise

2. Implement this trait for the animal types: Gopher (Clearness over Complexity), Crab (The safest program...) and
Python (Ssssss...)

3. Create a function named animal _saying that takes in a trait object (dynamically dispatched) of the Animal trait and
calls the sayit method.

4. Inthe main function, collect different animals in a vector and iterate through each, making them produce their respec-
tive sayings using the animal sound function.

72 Chapter 22. Dynamic Dispatch in Rust

Unit testing in Rust

23.1 Introduction

In this lab we are going to practice with the testing functionality of the Rust toolchain.

23.1.1 Requirements

1. A fresh mind
2. Spirit
3. Coffee at arms length

73

PVD816F Programming in Rust, Release 260625

23.1.2 What are we going to do

For this we are going to create a function that will solve quadratic equations.

The function will have a signature of:

We will first focus on the easy way and only test with arguments a, b and c that will have solutions
You can clone the crate with git from:
git clone https://thegitcave.org/pascal/rust-qeq.git
1. Task: Create a test case that tests the correct outcome for a certain aX?+bx+c quadratic equation

2. Task: Check what happens if you test an equation that does not have real solutions

3. Task: Implement table driven testen that will check for at least 5 different combinations

Bonus: Alter the function to return an Result with an err if there are no real solutions. Test with this Result

74 Chapter 23. Unit testing in Rust

https://thegitcave.org/pascal/rust-qeq.git

24

Benchmarking in Rust

24.1 Introduction

In this lab we will practice with benchmarking functions using the external benchmark suite Criterion

75

N o A w N e

[T B S O R

> w N e

PVD816F Programming in Rust, Release 260625

24.1.1 Requirements

A well setup Rust environment

24.1.2 Exercise 1

Let’s setup a new Rust library crate project with

For the lib.rs file use the following content to implement a recursive function.

Listing 1: myfac/src/main.rs

#[inline]
pub fn fac(n: u64) —> ub4 {
match n {
0 =1,
n => nxfac(n-1)

}

To setup for Criterion benchmarking alter your file like this:

Listing 2: code/myfac/Cargo.toml

[package]

name = "myfac”
version = 70.1.0”
edition = 72021”

See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.
<html

[dependencies]

[dev-dependencies]
criterion = { version="0.4.0", features=["html_reports”] }

[[bench]]
name = ”rust-fac-bench”
harness = false

Create a directory called in the root of your project like this:

benches

L— rust-fac-bench.rs
Cargo.lock

Cargo.toml

sTC

': lib.rs
main.rs
In this benches directory create a file called

with the following content:

Listing 3: myfac/benches/rust-fac-bench.rs

use criterion::{black_box, criterion_group, criterion_main, Criterion};
use myfac::fac;

pub fn criterion_benchmark(c: &mut Criterion) {
(continues on next page)

76 Chapter 24. Benchmarking in Rust

© ® N o W

> w N e

PVD816F Programming in Rust, Release 260625

(continued from previous page)

c.bench_function(”fac 20”, |b| b.iter(|| fac(black_box(20))));
}

criterion_group! (benches, criterion_benchmark);
criterion_main!(benches);

You can now run the Criterion benchmark like this:

[~ $> cargo bench

Observer the output.

In the directory you will find an index.html that containts a HTML report. You can read it
with your favorite webbrowser.

Now let’s add an optimization:

Please alter the function in the file like this:

Listing 4: myfac/src/main.rs

#[inline]
pub fn fac(num: u64) —> u6b4 {
(1..=num).fold(1, |acc, v| acc % v)

}

And run the benchmarks again. Look at the timings/numbers in the output of the command and in the gen-
erated html report. What do you observe?

Can you make more optimizations that will improve the timings?

24.1.3 Exercise 2

1. Write a recursive funtion that will calculate the n-th fibonacci nr
Fib(1) =1Fib(2) =1
Fib (n) = Fib(n-1) + Fib(n-2)
Benchmark this function with Criterion.
2. Write an iterative implemntation and benchmark this too. Observer te results.

3. Bonus: try to optimize the recursive implementation. E.g. use memoization or something else that will reduce the nr
of recursive calls. Use criterion to verify the impact of your optimizations.

24.1.4 Exercise 3
The king of recursion can most probably be found in the so called Ackermann function. This one explodes starting (4,0)

Listing 5: ackermann/src/main.rs

fn ackermann(m: u64, n: u64) — u6b4 {
match(m, n) {
(0, n) => n+1,
(m, 0) => ackermann(m-1, 1),
(my n) => ackermann(m-1, ackermann(m, n-1))

}
}
fn main() {
println!(”__ Ackermann Function's Calculation __");

for m in 0..5 {
for n in 0..(16-m) {
(continues on next page)

24.1. Introduction 77

PVD816F Programming in Rust, Release 260625

(continued from previous page)
println!(”ackermann({}, {}) = {}”, m, n, ackermann(m, n));

}

Bonus, try to benchmark and optimize the Ackermann() function.

78 Chapter 24. Benchmarking in Rust

25

Organization of a Rust project

25.1 Introduction

In this set of labs we will practice with setting up a more complex Rust project.

We will learn to:

1. Creating a library crate and publishing it

79

PVD816F Programming in Rust, Release 260625

25.1.1 Requirements

A well setup Rust environment, at least Rust 2021 edition

25.1.2 Exercise 1

Objective: Creating a binary create using multiple modules:

Remember:

+ Apackageis the largest unit of distribution in Rust. It contains a Cargo.toml file, which is the manifest file that describes

the package. A package can contain zero or one library crates and any number of binary crates. When we say “crate”
in this context, we are referring to a “compilable artifact” — essentially a library or a binary. Most functionality in the
Rust ecosystem is provided in the form of packages.

+ Acrate is a binary or library. If a package has multiple binaries (as seen in a previous example where we had multiple

s files in a bin/ directory), each one is a separate crate. A library crate is another type of crate that provides reusable
functionality and can be depended upon by other crates. Every crate has a root module, which can optionally have
child modules.

Modules are the primary way to organize and split code within a single crate. They form a hierarchical namespace
system. Rust uses a file-based module system, which means that each file can correspond to a module.

So let’s get started:

. Create a new rust project called eg.
. In the src directory create a file called

. In this file create a function with signature that will accept a

string slice and return that string in PascalCase. Your input string can be anything, including already in PascalCase,
snake_case, SCREAMING_SNAKE_CASE or camelCase

. Create unit tests to test the function
5. Createa Rust example program in examples to your library

. If all your tests are ok and you are happy with your crate, publish it using

80

Chapter 25. Organization of a Rust project

	Rust Setup
	Introduction
	Requirements
	Installing the Rust SDK
	Additional rustup functionality
	Cargo

	Summary

	Setting up an IDE for Rust
	Introduction
	VIM
	VScode
	Jetbrains IDE

	Introduction to Rust
	Introduction
	Requirements
	A simple rust program
	Displaying output in Rust

	Challenges: Mastering the println! macro
	Challenge P1: Number bases — hex, octal, and binary
	Challenge P2: Padding and alignment
	Challenge P3: Floating point precision
	Challenge P4: Debug printing with {:?} and {:#?}
	Challenge P5: Named parameters and expressions in println!

	Challenges: Variables, Ownership & Friends
	Challenge 1: Immutable variables — the default
	Challenge 2: Mutable variables — opting in
	Challenge 3: Shadowing — a new binding with the same name
	Challenge 4: Ownership with Copy types — integers are easy
	Challenge 5: Ownership with non-Copy types — the String move
	Challenge 6: Clone — explicit deep copies
	Challenge 7: Borrowing with references — reading without taking
	Challenge 8: Mutable borrowing — one writer at a time

	Summary of the Rust rules

	Rust Strings
	Introduction
	Requirements
	String literal or slice
	String vector

	Borrowing
	Introduction
	Requirements
	Ownership
	Borrowing

	Arrays in Rust
	Introduction
	Requirements
	Exercise 1
	Exercise 2

	Conditionals
	Introduction
	Requirements
	Exercise 1
	Exercise 2
	Exercise 3

	Loops in Rust
	Introduction
	Requirements
	Exercise 1
	Exercise 2
	Excercise 3

	Enums in Rust
	Introduction
	Requirements
	Exercise 1
	Exercise 2

	Structs in Rust
	Introduction
	Requirements
	Exercise 1
	Exercise 2

	Vectors in Rust
	Introduction
	Requirements
	Exercise 1
	Exercise 2
	Exercise 3

	Hashmaps in Rust
	Introduction
	Requirements
	Exercise 1

	Functions in Rust
	Introduction
	Requirements
	Exercise 1
	Exercise 2

	Methods in Rust
	Introduction
	Requirements
	Exercise 1
	Exercise 2
	Exercise 3

	Traits
	Introduction
	Requirements
	Exercise 1
	Exercise 2
	Exercise 3

	OOP in Rust
	Introduction
	Requirements
	Exercise 1

	Lifetimes in Rust
	Introduction
	Requirements

	Exercises
	Exercise 1
	Exercise 2
	Exercise 3

	Errorhandling in Rust
	Introduction
	Requirements

	Excercices
	Exercise 1
	Exercise 2

	Closures in Rust
	Introduction
	Requirements
	Exercise 1
	Exercise 2

	Iterators in Rust
	Introduction
	Requirements
	Exercise 1
	Exercise 2

	Generics in Rust
	Introduction
	Requirements
	Exercise 1
	Exercise 2

	Dynamic Dispatch in Rust
	Introduction
	Requirements
	Exercise 1

	Unit testing in Rust
	Introduction
	Requirements
	What are we going to do

	Benchmarking in Rust
	Introduction
	Requirements
	Exercise 1
	Exercise 2
	Exercise 3

	Organization of a Rust project
	Introduction
	Requirements
	Exercise 1

