
Introduction to programming in Rust

Pascal van Dam

February 12, 2026

Introduction

About the Trainer

Pascal van Dam, living in Nieuw Bergen (Limburg/NL)
Owner of Poortier Management B.V / PASCALVANDAM.COM
Trainer & Consultant Open-Source Solutions:

• Kubernetes & Containers
• Virtualization & Cloud
• Go, Rust, NodeJS, C, C++, Perl
• Cloud Automation & Orchestration
• CI/CD Argo, Flux, Gitlab
• Linux Kernel Internals

©PASCALVANDAM.COM, 2025 2

©PASCALVANDAM.COM, 2025 3

Introduction

Trainer & Student Introduction

About the Student

Introduce yourself shortly
Do you have any experience with

• Rust
• Go, Zig, Haskell
• Other programming languages
• Containers/Kubernetes
• Linux

©PASCALVANDAM.COM, 2025 6

About this Course

This course:
Is developed for professionals that are already familiar with a programming
language and would like to get up & running with Rust.
It will introduce you to the essentials of the Rust programming language
Enables you to write programs in an idiomatic way in Rust
Introduces you into the rites and habits of a Rustling/Rustacean

©PASCALVANDAM.COM, 2025 7

Certification

Currently there is no official certification program for Rust
If you want to standout in the crowd, solve a non trivial problem (OpenSource) and
publish it on github or gitlab

©PASCALVANDAM.COM, 2025 8

Coverage of Rust versions

Minimal Rust version required: 1.88.0 dd 2025-06-26
Course updated up to version: 1.88.0 dd 2025-06-26

©PASCALVANDAM.COM, 2025 9

AGENDA Day 1/4 part 1

Introduction to the course
Introduction to Rust
Philosophy behind Rust
Install and configure your Rust environment
Anatomy of a Rust program

©PASCALVANDAM.COM, 2025 10

AGENDA Day 1/4 part 2

My first Rust program
Variables
Constants
Primitive datatypes
Strings

©PASCALVANDAM.COM, 2025 11

AGENDA Day 1/4 part 3

Arrays
Ownership & Borrowing
Conditionals
Loops
Functions

©PASCALVANDAM.COM, 2025 12

AGENDA Day 2 part 1

Tuples
Structs
Enums
Vectors
HashMaps
Options
Results

©PASCALVANDAM.COM, 2025 13

AGENDA Day 2 part 2

Errorhandling in Rust
Structs & OOP
Traits

©PASCALVANDAM.COM, 2025 14

AGENDA Day 3/4

Closures
Lifetimes
Generics
Rust std library
Crates
Building and publishing your own crates

©PASCALVANDAM.COM, 2025 15

AGENDA Day 4/4

Cross compiling
Concurrency in Rust
Rust in containers
Webservers in Rust
Rust and JSON
Templating in Rust
Smart pointers

©PASCALVANDAM.COM, 2025 16

Behaviour Categories in C/C++

Three Categories of “Non-Portable” Behaviour

The C and C++ standards define three categories of behaviour that are not fully
specified:

Implementation-defined behaviour
• The compiler must pick a behaviour and document it
• Consistent and predictable on a given platform

Unspecified behaviour
• The compiler picks from a set of allowed options
• No obligation to document or be consistent

Undefined behaviour (UB)
• No requirements whatsoever
• The compiler may assume UB never happens
• Can break your entire program

©PASCALVANDAM.COM, 2025 18

Key Differences at a Glance

How do they compare?

Documented? Consistent? Dangerous?
Implementation-defined Yes Yes Low
Unspecified No Not necessarily Medium
Undefined No No Extreme

The crucial insight: with UB, the compiler uses the assumption that UB never occurs
to optimize away entire code paths.

©PASCALVANDAM.COM, 2025 19

Implementation-Defined - Trivial 1/3

Size of fundamental types

� code/impl-defined-1/src/main.c �

1 #include <stdio.h>
2
3 int main() {

4 printf("sizeof(int) = %zu\n", sizeof(int));

5 printf("sizeof(long) = %zu\n", sizeof(long));
6 // Could be 4 or 8 for long
7 // The compiler documents what it chose
8 return 0;
9 }

The standard only mandates minimum sizes
Your compiler documents the exact sizes it uses

©PASCALVANDAM.COM, 2025 20

Implementation-Defined - Trivial 2/3

Signedness of char

� code/impl-defined-2/src/main.c �

1 #include <stdio.h>
2
3 int main() {
4 char c = 200;

5 printf("c = %d\n", (int)c);

6 // Could print 200 (unsigned char)

7 // Could print -56 (signed char)
8 return 0;

Is char signed or unsigned? The standard doesn’t say!
On x86 Linux (GCC): typically signed
On ARM: typically unsigned

©PASCALVANDAM.COM, 2025 21

Implementation-Defined - Trivial 3/3

Byte order (endianness)

� code/impl-defined-3/src/main.c �

1 #include <stdio.h>
2
3 int main() {
4 int x = 0x01020304;

5 unsigned char *p = (unsigned char *)&x;

6 printf("First byte: 0x%02x\n", p[0]);
7 // Little-endian: 0x04
8 // Big-endian: 0x01
9 return 0;

How multi-byte values are stored in memory
x86/x64: little-endian, ARM: configurable
Consistent and documented per platform

©PASCALVANDAM.COM, 2025 22

Implementation-Defined - Intermediate 1/2

Right-shifting a negative signed integer (before C++20)

� code/impl-defined-4/src/main.c �

1 #include <stdio.h>
2
3 int main() {
4 int x = -8;
5 int y = x >> 1;

6 printf("y = %d\n", y);
7 // Arithmetic shift: y = -4
8 // Logical shift: y = large positive nr
9 return 0;

Before C++20: implementation-defined whether arithmetic or logical
Most compilers use arithmetic shift (preserving sign)
C++20 mandates two’s complement and arithmetic right shift

©PASCALVANDAM.COM, 2025 23

Implementation-Defined - Intermediate 2/2

Struct padding and alignment

� code/impl-defined-5/src/main.c �

1 #include <stdio.h>
2
3 struct Example {
4 char a; // 1 byte
5 int b; // 4 bytes
6 char c; // 1 byte
7 };
8
9 int main() {

10 printf("sizeof = %zu\n",

11 sizeof(struct Example));
12 // Typically 12, not 6!
13 return 0;
14 }

The compiler inserts padding for alignment
Exact layout is implementation-defined

©PASCALVANDAM.COM, 2025 24

Unspecified Behaviour - Trivial 1/3

Order of evaluation in expressions

� code/unspecified-1/src/main.cpp �

1 #include <iostream>
2
3 int a() { std::cout << "a "; return 1; }

4 int b() { std::cout << "b "; return 2; }
5
6 int main() {

7 int result = a() + b();
8 // Could print "a b" or "b a"
9 // Both WILL be called

10 // Order is unspecified

The compiler can evaluate a() or b() first
This is not UB — both are evaluated, just in unknown order
No obligation to document or be consistent

©PASCALVANDAM.COM, 2025 25

Unspecified Behaviour - Trivial 2/3

Order of function argument evaluation

� code/unspecified-2/src/main.cpp �

1 #include <cstdio>
2
3 void foo(int a, int b, int c) {

4 printf("%d %d %d\n", a, b, c);
5 }
6
7 int main() {
8 // Which argument is evaluated first?
9 // Unspecified! May vary per build

10 foo(f(), g(), h());

Arguments to a function may be evaluated in any order
May vary between optimization levels

©PASCALVANDAM.COM, 2025 26

Unspecified Behaviour - Trivial 3/3

Value of a moved-from object (C++)

� code/unspecified-3/src/main.cpp �

1 #include <string>
2 #include <iostream>
3
4 int main() {
5 std::string a = "hello world";

6 std::string b = std::move(a);
7
8 // 'a' is in a valid but unspecified state

9 std::cout << a.size() << std::endl;
10 // Could be 0, could be something else

After std::move, the source is in a “valid but unspecified” state
You can call methods on it, but the value is unknown

©PASCALVANDAM.COM, 2025 27

Unspecified Behaviour - Intermediate 1/2

Static initialization order across translation units

� code/unspecified-4/src/main.cpp �

1 // file_a.cpp

2 int compute_a();

3 int global_a = compute_a();
4
5 // file_b.cpp
6 extern int global_a;
7 int global_b = global_a + 1;
8 // global_a might not be initialized yet!
9 // Order across TUs is unspecified

Known as the “Static Initialization Order Fiasco”
Within one file: top-to-bottom (defined)
Across files: unspecified! Could change between builds

©PASCALVANDAM.COM, 2025 28

Unspecified Behaviour - Intermediate 2/2

Heap allocation placement

� code/unspecified-5/src/main.cpp �

1 #include <iostream>
2
3 int main() {

4 int *a = new int(1);

5 int *b = new int(2);
6
7 // Are a and b adjacent in memory?
8 // Is a < b or b < a?
9 // Completely unspecified

10 std::cout << (a < b) << std::endl;
11
12 delete a;

The allocator places objects anywhere on the heap
Result may vary between runs

©PASCALVANDAM.COM, 2025 29

Undefined Behaviour - Trivial 1/3

Signed integer overflow

� code/ub-1/src/main.c �

1 #include <limits.h>
2 #include <stdio.h>
3
4 int main() {
5 int x = INT_MAX;
6 int y = x + 1;

7 printf("y = %d\n", y);
8 // UB! Compiler assumes this never happens
9 // May optimize away overflow checks

10 return 0;

Signed overflow is UB (unsigned wraps — well-defined)
Compilers exploit this to remove “impossible” branches

©PASCALVANDAM.COM, 2025 30

Undefined Behaviour - Trivial 2/3

Dereferencing a null pointer

� code/ub-2/src/main.c �

1 #include <stdio.h>
2
3 int main() {
4 int *p = NULL;
5 *p = 42;
6 // UB! Anything can happen:

7 // - Segfault (if you're lucky)
8 // - Silent corruption
9 // - Compiler removes surrounding code

10 return 0;

The most classic form of UB
On most OSes you get a segfault, but not guaranteed
In embedded systems, address 0 may be valid memory!

©PASCALVANDAM.COM, 2025 31

Undefined Behaviour - Trivial 3/3

Out-of-bounds array access

� code/ub-3/src/main.c �

1 #include <stdio.h>
2
3 int main() {
4 int arr[3] = {10, 20, 30};

5 printf("%d\n", arr[5]);
6 // UB! Reading beyond the array
7 // Could return garbage, crash, or
8 // compiler removes the function
9 return 0;

No bounds checking in C/C++ arrays
Buffer overflows: the #1 cause of security vulnerabilities

©PASCALVANDAM.COM, 2025 32

Undefined Behaviour - Intermediate 1/2

Use-after-free and dangling pointers

� code/ub-4/src/main.cpp �

1 #include <iostream>
2 #include <string>
3
4 std::string* create() {
5 std::string s = "hello";
6 return &s; // address of local variable!
7 }
8
9 int main() {

10 std::string *p = create();
11 std::cout << *p << std::endl;

12 // UB! 's' destroyed when create() returned

Dangling pointers: pointing to freed memory
May “work” in debug builds, crash in release builds

©PASCALVANDAM.COM, 2025 33

Undefined Behaviour - Intermediate 2/2

Data race in multithreaded code

� code/ub-5/src/main.cpp �

1 #include <thread>
2 #include <iostream>
3
4 int counter = 0;
5
6 void increment() {

7 for (int i = 0; i < 100000; i++)
8 counter++; // UB! unsynchronized write
9 }

10
11 int main() {

12 std::thread t1(increment);

13 std::thread t2(increment);

14 t1.join(); t2.join();
15 std::cout << counter << std::endl;

Two threads writing without synchronization = UB
Fix: use std::atomic<int> or std::mutex

©PASCALVANDAM.COM, 2025 34

What does Rust do about it? - Overview

Rust’s philosophy: make the compiler catch these bugs
Implementation-defined→ Fixed-size types

• i32, u64, f32 — no ambiguity
Unspecified→ Defined evaluation order

• Function arguments: left to right
• No “static initialization order fiasco”

Undefined→ Safe Rust has no UB by design
• Ownership prevents use-after-free and data races
• Bounds checking on array/slice access
• No null pointers (Option<T> instead)
• Integer overflow: panic in debug, wrap in release

©PASCALVANDAM.COM, 2025 35

Rust vs C/C++ - Implementation-defined

Rust eliminates ambiguity with explicit types

� code/rust-impl-1/src/main.rs �

1 fn main() {
2 let x: i32 = 42; // Always 32-bit signed
3 let y: u8 = 200; // Always 8-bit unsigned
4 let z: f64 = 3.14; // Always 64-bit float
5
6 // No implicit type conversions!
7 // let bad: i32 = y; // Does not compile
8 let good: i32 = y as i32; // Explicit

9 println!("{x} {good} {z}");

No guessing: i8, i16, i32, i64, i128
Platform-specific sizes are explicit: isize, usize
Struct layout controllable with #[repr(C)]

©PASCALVANDAM.COM, 2025 36

Rust vs C/C++ - No Null Pointers

Null pointer dereference→ impossible in safe Rust

� code/rust-ub-1/src/main.rs �

1 fn main() {
2 // There is no null in Rust!
3 // Instead, use Option<T>:
4 let maybe_value: Option<i32> = None;
5
6 // You MUST handle the None case:
7 match maybe_value {

8 Some(v) => println!("Got: {}", v),

9 None => println!("No value"),
10 }

Tony Hoare called null his “billion-dollar mistake”
Rust’s Option<T> makes absence explicit and checked

©PASCALVANDAM.COM, 2025 37

Rust vs C/C++ - Bounds Checking

Buffer overflow→ caught at runtime in Rust

� code/rust-ub-2/src/main.rs �

1 fn main() {
2 let arr = [10, 20, 30];

3 // println!("{}", arr[5]);
4 // Panics at runtime:
5 // "index out of bounds: len is 3
6 // but the index is 5"
7
8 // Safe iteration - no index needed:
9 for val in &arr {

10 println!("{}", val);
11 }

A panic is not UB — it’s a controlled, defined crash
Iterators avoid the need for manual indexing

©PASCALVANDAM.COM, 2025 38

Rust vs C/C++ - Data Races

Data races→ prevented at compile time

� code/rust-ub-3/src/main.rs �

1 use std::thread;
2 use std::sync::atomic::{AtomicI32, Ordering};
3 use std::sync::Arc;
4
5 fn main() {

6 let counter = Arc::new(AtomicI32::new(0));
7 let mut handles = vec![];
8 for _ in 0..2 {

9 let c = Arc::clone(&counter);

10 handles.push(thread::spawn(move || {
11 for _ in 0..100_000 {

12 c.fetch_add(1, Ordering::Relaxed);
13 }

14 }));
15 }

16 for h in handles { h.join().unwrap(); }

17 println!("{}", counter.load(Ordering::Relaxed));

©PASCALVANDAM.COM, 2025 39

But what about unsafe Rust?

Rust does allow UB — but only inside unsafe blocks

� code/rust-unsafe-1/src/main.rs �

1 fn main() {
2 let x: i32 = 42;
3 let p: *const i32 = &x;
4
5 // This is safe:

6 println!("{}", x);
7
8 // This requires unsafe:
9 unsafe {

10 println!("{}", *p);
11 }

unsafe is an explicit opt-in to manual memory management
Marks exactly where to look when things go wrong
The vast majority of Rust code does not need unsafe

©PASCALVANDAM.COM, 2025 40

Summary

C/C++ gives you power but trusts you completely. Rust verifies.

C/C++ Problem Category Rust Solution
sizeof(int) varies Impl-defined Fixed-size types
char signedness Impl-defined u8/i8 explicit
Evaluation order Unspecified Left-to-right
Moved-from state Unspecified Move = transfer
Null dereference UB Option<T>

Buffer overflow UB Bounds checking
Use-after-free UB Ownership
Data races UB Send/Sync
Signed overflow UB Panic or wrap

©PASCALVANDAM.COM, 2025 41

Introduction to Rust

Introduction to Rust 1/2

Started out in 2006 as a personal project by Graydon Hoare
Sponsored by Mozilla since 2009
Opened up to the world in 2010
Stable 1.0 version in 2015
Est. of Rust Foundation in 2021
Named after the fungus: Rust
Moniker of choice: Rustaceans
Mascot: Ferris the Crab

©PASCALVANDAM.COM, 2025 43

Introduction to Rust 2/2

Tobe PCI: 33rd in 2019, 18th in 2020
Stack Overflow: Most loved language since 2016
Systems programming language
Influenced by: SML, OCaml, C++, Cyclone, Haskell, Lisp and Erlang
Used by companies like: Amazon, ARM, Discord, Dropbox, Google, Meta and
Microsoft

©PASCALVANDAM.COM, 2025 44

What Rust promises

Safety -> guaranteed @ compiletime
Fearless concurrecy
Blazingly fast speed

©PASCALVANDAM.COM, 2025 45

Rust is ...

a language with a steep learning curve
a friendly language
a language with a large ecosystem
a so called expression language

©PASCALVANDAM.COM, 2025 46

Projects realized in Rust

Firefox/Mozilla
Linux kernel ext. Linux 6.x
Redox (Microkernel OS)
Tauri
OpenEthereum
Ruffle (flash emulator)
Rustdesk

©PASCALVANDAM.COM, 2025 47

Can I do ... in Rust?

Procedural programming? -> Yes
Object Oriented Programming> -> Yes
Functional Programming? -> Yes
Concurrent Programming? -> Yes

©PASCALVANDAM.COM, 2025 48

Cons to Rust

No formal language description...
Compile times can take very long...
Learning curve can be steep...

©PASCALVANDAM.COM, 2025 49

Cons to Rust

No formal language description...

Compile times can take very long...
Learning curve can be steep...

©PASCALVANDAM.COM, 2025 49

Cons to Rust

No formal language description...
Compile times can take very long...

Learning curve can be steep...

©PASCALVANDAM.COM, 2025 49

Cons to Rust

No formal language description...
Compile times can take very long...
Learning curve can be steep...

©PASCALVANDAM.COM, 2025 49

Cons to Rust

No formal language description...
Compile times can take very long...
Learning curve can be steep...

©PASCALVANDAM.COM, 2025 49

Go Show

Simple helloworld in Rust
package declaration
fn main()

semicolons
println!

� code/rust-helloworld/src/main.rs �

1 fn main() {

2 println!("Hello, world!");
3 }

©PASCALVANDAM.COM, 2025 50

Rust Show - http-client example

1 use std::collections::HashMap;

2
3 #[tokio::main]

4 async fn main() -> Result<(), Box<dyn std::error::Error>> {

5 let client = reqwest::Client::builder()

6 .build()?;

7
8 let res = client

9 .get("https://httpbin.org/ip")

10 .send()

11 .await?;

12
13 let ip = res

14 .json::<HashMap<String, String>>()

15 .await?;

16
17 println!("{:?}", ip);

18 Ok(())

19 }

©PASCALVANDAM.COM, 2025 51

Rust Show - http-server example

1 use warp::{Filter};

2 use gethostname::gethostname;

3 use local_ip_address::local_ip;

4
5 #[tokio::main]

6 async fn main() {

7 let hello = warp::path!("hello" / String)

8 .map(|name| format!("

9 Ferris says: hello {} from: {:?} - {:?}\n\n\n",name,gethostname(),local_ip().unwrap()));

10
11 let routes =

12 warp::

13 get()

14 .and(hello);

15
16 let (host , port) = ([0,0,0,0], 3030);

17 println!("Starting server on: {}:{}", host.map(|a| a.to_string()).join("."), port);

18 warp::serve(routes)

19 .run((host, port))

20 .await;

21 }

©PASCALVANDAM.COM, 2025 52

Rust Show - concurrency example

1 use std::thread;

2 use std::time::Duration;

3
4 fn main() {

5 let handle = thread::spawn(|| {

6 for i in 1..10 {

7 println!("Number {} from the spawned thread!", i);

8 thread::sleep(Duration::from_millis(1));

9 }

10 });

11 for i in 1..5 {

12 println!("Number {} from the main thread!", i);

13 thread::sleep(Duration::from_millis(1));

14 }

15 handle.join().unwrap();

16 }

©PASCALVANDAM.COM, 2025 53

Install and configure your Rust environment

Installing Rust on Linux, UNIX or OSX

Installation Options for Linux, UNIX and OSX
Install from distro repos (apt, yum, dnf)
Download latest using rustup tool from http://rustup.rs

� code/install-linux.sh �

Install Rust using the rustup tool on Linux, UNIX and Mac OS/X

curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh

©PASCALVANDAM.COM, 2025 55

Installing Rust on Windows

Installation on Windows
Download rustup-init.exe from https://static.rust-lang.org/rustup/dist/x86_64-
pc-windows-msvc/rustup-init.exe
And follow the instructions

©PASCALVANDAM.COM, 2025 56

Rustup commands

The rustup command gives us access to various functionality of the Rust SDK

rustup -V Shows the current rustup version
rustup update Updates the Rust toolchain to the latest available version
rustup self update Updates rustup tool
rust up check Checks if there are updates
rustup help Provides help to the rustup (sub-commands)
rustup show Shows current toolchain versions
rustup doc Shows documentation of current toolchain
rustup self remove Removes rustup and Rust installation

©PASCALVANDAM.COM, 2025 57

Rustup commands

The rustup command gives us access to various functionality of the Rust SDK

rustup -V Shows the current rustup version

rustup update Updates the Rust toolchain to the latest available version
rustup self update Updates rustup tool
rust up check Checks if there are updates
rustup help Provides help to the rustup (sub-commands)
rustup show Shows current toolchain versions
rustup doc Shows documentation of current toolchain
rustup self remove Removes rustup and Rust installation

©PASCALVANDAM.COM, 2025 57

Rustup commands

The rustup command gives us access to various functionality of the Rust SDK

rustup -V Shows the current rustup version
rustup update Updates the Rust toolchain to the latest available version

rustup self update Updates rustup tool
rust up check Checks if there are updates
rustup help Provides help to the rustup (sub-commands)
rustup show Shows current toolchain versions
rustup doc Shows documentation of current toolchain
rustup self remove Removes rustup and Rust installation

©PASCALVANDAM.COM, 2025 57

Rustup commands

The rustup command gives us access to various functionality of the Rust SDK

rustup -V Shows the current rustup version
rustup update Updates the Rust toolchain to the latest available version
rustup self update Updates rustup tool

rust up check Checks if there are updates
rustup help Provides help to the rustup (sub-commands)
rustup show Shows current toolchain versions
rustup doc Shows documentation of current toolchain
rustup self remove Removes rustup and Rust installation

©PASCALVANDAM.COM, 2025 57

Rustup commands

The rustup command gives us access to various functionality of the Rust SDK

rustup -V Shows the current rustup version
rustup update Updates the Rust toolchain to the latest available version
rustup self update Updates rustup tool
rust up check Checks if there are updates

rustup help Provides help to the rustup (sub-commands)
rustup show Shows current toolchain versions
rustup doc Shows documentation of current toolchain
rustup self remove Removes rustup and Rust installation

©PASCALVANDAM.COM, 2025 57

Rustup commands

The rustup command gives us access to various functionality of the Rust SDK

rustup -V Shows the current rustup version
rustup update Updates the Rust toolchain to the latest available version
rustup self update Updates rustup tool
rust up check Checks if there are updates
rustup help Provides help to the rustup (sub-commands)

rustup show Shows current toolchain versions
rustup doc Shows documentation of current toolchain
rustup self remove Removes rustup and Rust installation

©PASCALVANDAM.COM, 2025 57

Rustup commands

The rustup command gives us access to various functionality of the Rust SDK

rustup -V Shows the current rustup version
rustup update Updates the Rust toolchain to the latest available version
rustup self update Updates rustup tool
rust up check Checks if there are updates
rustup help Provides help to the rustup (sub-commands)
rustup show Shows current toolchain versions

rustup doc Shows documentation of current toolchain
rustup self remove Removes rustup and Rust installation

©PASCALVANDAM.COM, 2025 57

Rustup commands

The rustup command gives us access to various functionality of the Rust SDK

rustup -V Shows the current rustup version
rustup update Updates the Rust toolchain to the latest available version
rustup self update Updates rustup tool
rust up check Checks if there are updates
rustup help Provides help to the rustup (sub-commands)
rustup show Shows current toolchain versions
rustup doc Shows documentation of current toolchain

rustup self remove Removes rustup and Rust installation

©PASCALVANDAM.COM, 2025 57

Rustup commands

The rustup command gives us access to various functionality of the Rust SDK

rustup -V Shows the current rustup version
rustup update Updates the Rust toolchain to the latest available version
rustup self update Updates rustup tool
rust up check Checks if there are updates
rustup help Provides help to the rustup (sub-commands)
rustup show Shows current toolchain versions
rustup doc Shows documentation of current toolchain
rustup self remove Removes rustup and Rust installation

©PASCALVANDAM.COM, 2025 57

Rustup commands

The cargo command gives us access to various functionalities of the Rust toolchain

cargo new Initializes a new Rust project in a new directory
cargo init Initializes a new Rust project in existing directory
cargo run Builds and runs current Rust project
cargo build Compiles/builds current Rust project
cargo clippy Run’s clippy/linter against current project
cargo test Run tests from current project
cargo bench Run benchmarks from current project
cargo clean Clean up project’s target directory

©PASCALVANDAM.COM, 2025 58

Rustup commands

The cargo command gives us access to various functionalities of the Rust toolchain

cargo new Initializes a new Rust project in a new directory

cargo init Initializes a new Rust project in existing directory
cargo run Builds and runs current Rust project
cargo build Compiles/builds current Rust project
cargo clippy Run’s clippy/linter against current project
cargo test Run tests from current project
cargo bench Run benchmarks from current project
cargo clean Clean up project’s target directory

©PASCALVANDAM.COM, 2025 58

Rustup commands

The cargo command gives us access to various functionalities of the Rust toolchain

cargo new Initializes a new Rust project in a new directory
cargo init Initializes a new Rust project in existing directory

cargo run Builds and runs current Rust project
cargo build Compiles/builds current Rust project
cargo clippy Run’s clippy/linter against current project
cargo test Run tests from current project
cargo bench Run benchmarks from current project
cargo clean Clean up project’s target directory

©PASCALVANDAM.COM, 2025 58

Rustup commands

The cargo command gives us access to various functionalities of the Rust toolchain

cargo new Initializes a new Rust project in a new directory
cargo init Initializes a new Rust project in existing directory
cargo run Builds and runs current Rust project

cargo build Compiles/builds current Rust project
cargo clippy Run’s clippy/linter against current project
cargo test Run tests from current project
cargo bench Run benchmarks from current project
cargo clean Clean up project’s target directory

©PASCALVANDAM.COM, 2025 58

Rustup commands

The cargo command gives us access to various functionalities of the Rust toolchain

cargo new Initializes a new Rust project in a new directory
cargo init Initializes a new Rust project in existing directory
cargo run Builds and runs current Rust project
cargo build Compiles/builds current Rust project

cargo clippy Run’s clippy/linter against current project
cargo test Run tests from current project
cargo bench Run benchmarks from current project
cargo clean Clean up project’s target directory

©PASCALVANDAM.COM, 2025 58

Rustup commands

The cargo command gives us access to various functionalities of the Rust toolchain

cargo new Initializes a new Rust project in a new directory
cargo init Initializes a new Rust project in existing directory
cargo run Builds and runs current Rust project
cargo build Compiles/builds current Rust project
cargo clippy Run’s clippy/linter against current project

cargo test Run tests from current project
cargo bench Run benchmarks from current project
cargo clean Clean up project’s target directory

©PASCALVANDAM.COM, 2025 58

Rustup commands

The cargo command gives us access to various functionalities of the Rust toolchain

cargo new Initializes a new Rust project in a new directory
cargo init Initializes a new Rust project in existing directory
cargo run Builds and runs current Rust project
cargo build Compiles/builds current Rust project
cargo clippy Run’s clippy/linter against current project
cargo test Run tests from current project

cargo bench Run benchmarks from current project
cargo clean Clean up project’s target directory

©PASCALVANDAM.COM, 2025 58

Rustup commands

The cargo command gives us access to various functionalities of the Rust toolchain

cargo new Initializes a new Rust project in a new directory
cargo init Initializes a new Rust project in existing directory
cargo run Builds and runs current Rust project
cargo build Compiles/builds current Rust project
cargo clippy Run’s clippy/linter against current project
cargo test Run tests from current project
cargo bench Run benchmarks from current project

cargo clean Clean up project’s target directory

©PASCALVANDAM.COM, 2025 58

Rustup commands

The cargo command gives us access to various functionalities of the Rust toolchain

cargo new Initializes a new Rust project in a new directory
cargo init Initializes a new Rust project in existing directory
cargo run Builds and runs current Rust project
cargo build Compiles/builds current Rust project
cargo clippy Run’s clippy/linter against current project
cargo test Run tests from current project
cargo bench Run benchmarks from current project
cargo clean Clean up project’s target directory

©PASCALVANDAM.COM, 2025 58

IDE and Editors for Rust

VScode: (or short code with Rust extensions)
IntelliJ/CLion: add OpenSource Rust plugin
Vim/Neovim: with vim-rust plugins

©PASCALVANDAM.COM, 2025 59

Rust Editions

Rust so far has had 3 Editions
Rust 2015 - The original 1.0
Rust 2018
Rust 2021
Rust 2024 - Current edition

©PASCALVANDAM.COM, 2025 60

Rust releases or channels

Rust has three channels providing Rust releases:
Nightly
Beta - Every 6 weeks
Stable - 6 weeks after first Beta

©PASCALVANDAM.COM, 2025 61

My first Rust program

First steps in Rust 1/2

Simple helloworld in Rust
The entrypoint of every Rust program is the
main() function
Reaching the end of main will exit the program
Standard modules are in the Prelude

Other modules are imported with use

Semi columns are mandatory
Prelude contents: https://doc.rust-
lang.org/stable/std/prelude/index.html

� code/rust-helloworld/src/main.rs �

1 fn main() {

2 println!("Hello, world!");
3 }

©PASCALVANDAM.COM, 2025 63

First Steps in Rust 2/2

Using a module

� code/rust-rnd/src/main.rs �

1 use rand::Rng;
2
3 fn main() {

4 let mut range = rand::thread_rng();
5
6 let num: i32 = range.gen();
7
8 println!("Random: {}", num);
9 }

©PASCALVANDAM.COM, 2025 64

Rust general syntactics

The language is case sensitive
main() is a reserved function
Blocks are enclosed in curly braces {}
Semicolons are mandatory
Except for tail expressions

• With semicolon -> statement
• Without semicolon -> expression

©PASCALVANDAM.COM, 2025 65

Setting up a new Rust project

Use |cargo new <prjname>| to setup a new Rust project
• The <prjname> directory will be created
• Cargo.toml will be created
• Diverse GIT files .gitignore
• The src directory
• In src/main.rs a template Rust program

©PASCALVANDAM.COM, 2025 66

Running a Rust program

To run, use cargo run

and check the output in a terminal

©PASCALVANDAM.COM, 2025 67

Compiling/building a Rust program

To build a Rust program for test/debug, use cargo build

To build for release use cargo build --release

The resulting binary will be in the target directory

©PASCALVANDAM.COM, 2025 68

Cross compiling

Two options:
Using rustup
Using cargo cross

©PASCALVANDAM.COM, 2025 69

Cross compiling using Rustup

Add Rust target toolchain with rustup

Add cross compiler toolchain to OS setup
Use cargo to compile to the new target

1 rustup target add aarch64-unknown-linux-gnu

2 sudo apt-get install gcc-aarch64-linux-gnu g++-aarch64-linux-gnu

©PASCALVANDAM.COM, 2025 70

Cross compiling using Cargo cross

External cargo package
Uses docker or podman for cross compiling
Can use qemu for testing

1 cargo install cross

2
3 sudo apt install podman -y

4
5 cd march

6 cross build --target riscv64gc-unknown-linux-gnu

©PASCALVANDAM.COM, 2025 71

Comments in Rust

Comments in Rust serve 2 purposes:
• Improving readability & clarity of source code
• As input for Rust doc as integrated documentation

� code/rust-comment/src/main.rs �

1 // Single line comment
2
3 fn main() {

4 println!("Hello, world!");
5 }

� code/rust-ml-
comment/src/main.rs

�

1 /*
2 * This is a multiline comment
3 *
4 ⁎/
5
6 fn main() {

7 println!("Hello, world!");
8 }

©PASCALVANDAM.COM, 2025 72

Variables in Rust

Rust is a statically typed language
Variable declarations reserve memory for a specific type and value
The memory location is identified by the name of the variable

©PASCALVANDAM.COM, 2025 73

Variables in Rust

Variables are by default immutable after assignment of a value
Immutable variables cannot get a new value assigned
Variables can be made mutable using the mut prefix

1 fn main() {

2
3 let color = "red";

4 let mut n = 0 ;

5
6 n = 42 ;

7
8 println!("n == {}\n",n) ;

9 }

©PASCALVANDAM.COM, 2025 74

Constants in Rust

Immutable variables are NOT constants
Consts are literals and are inlined
Statics do have a known memory location
Choose const over static

1 const MY_NR: usize = 10 ;

2 static PI2: f64 = 6.28 ;

3
4 fn main() {

5
6 let mut i = MY_NR ;

7
8 println!("{}",PI2) ;

9
10 while i>0 {

11 println!("{}", i) ;

12 i -= 1 ;

13 }

14 }

©PASCALVANDAM.COM, 2025 75

Constants in Rust: const

A const

Represents a value that will get inlined
Always immutable
Has not lifetime inlined
Initialization at compile-time constantexpression
Can be of any type (evaluated at compile time)
No dereferencing possible
Naming convention => SCREAMING_SNAKE_CASE

©PASCALVANDAM.COM, 2025 76

Constants in Rust: static

A static

Represents a memory location
Immutable by default
Static lifetime => the lifetime of the program
Initialization at run-time with constant expression
Can be of any type even references
Dereferencing IS possible
Naming convention => SCREAMING_SNAKE_CASE

©PASCALVANDAM.COM, 2025 77

Rust primitive datatypes

Rust Primitive Datatypes

Primitive datatypes
Integers
Floats
Bool
Char
String literals

©PASCALVANDAM.COM, 2025 79

Integers

Signed integers (i8, i16, i32, i64, i128, isize)
Unsigned integers (u8, u16, u32, u64, u128, usize)

©PASCALVANDAM.COM, 2025 80

Floats

f32
f64

©PASCALVANDAM.COM, 2025 81

Bool

true
false

©PASCALVANDAM.COM, 2025 82

Char

Represents a unicode character
Always 4 bytes in size

©PASCALVANDAM.COM, 2025 83

String Literal

Type: &str
Slice (&[u8]) that always points to a valid UTF-8 sequence

©PASCALVANDAM.COM, 2025 84

Ownership

Memory management concepts 1/4

Stack vs Heap
Stack

• Fast
• Size of variable must be known
• LIFO

©PASCALVANDAM.COM, 2025 86

Memory management concepts 2/4

Stack vs Heap
Heap

• Slow
• Size of variable can be unknown
• Who frees up allocated memory?

©PASCALVANDAM.COM, 2025 87

Memory management concepts 3/4

Explicit or implicit memory management:
Explicit

• Explicit memory allocation for compound types
• Lot’s of control
• Lot’s of bugs
• Fast
• Used by C, C++

©PASCALVANDAM.COM, 2025 88

Memory management concepts 4/4

Explicit or Implicit memory management:
Implicit

• Garbage Collection
• Limited control
• No bugs
• Freezes/lag spikes
• Java, JS, Go etc

©PASCALVANDAM.COM, 2025 89

Memory Management in Rust

Can’t we have both? Fast and safe?
Yes we can! In Rust, By taking ’ownership’!!

©PASCALVANDAM.COM, 2025 90

The Three Rules of Ownership in Rust

Three ownership rules
Each variable is the owner of it’s initialized value
A variable can only have 1 owner at a time
When the owner goes out of scope, the value will be dropped

©PASCALVANDAM.COM, 2025 91

Ownership rules - 1/3

Each variable is the owner of it’s initialized value

� code/ownership-1/src/main.rs �

1 // ownership_1
2
3 fn main() {
4
5 let a: i64 = 42 ;
6 let b = a;
7
8 println!("a == {0} and b == {1}",a,b) ;
9 }

Var ’a’ and ’b’ are primitive data types and as such allocated on the stack
Both ’a’ and ’b’ own their own values

©PASCALVANDAM.COM, 2025 92

Ownership rules - 2/3

A variable can only have 1 owner at a time

� code/ownership-3/src/main.rs �

1 // ownership_3
2
3 fn main() {
4
5 let a = String::from("one");
6 let b = a ;
7
8 println!("a == {0} and b == {1}",a,b) ;
9 }

Var ’a’ and ’b’ are compound datatypes and as such allocated on the heap
Ownership ’a’ => ’b’
Var ’a’ is not valid anymore
Does not compile!

©PASCALVANDAM.COM, 2025 93

Ownership rules - 3/3

When the owner goes out of scope, the value will be dropped

� code/ownership-3c/src/main.rs �

1 // ownership_3
2
3 fn main() {
4
5 let a = String::from("one");
6
7 {
8 let b = a;

9 println!("b == {0}",b) ;
10 }

11 println!("b == {}",b) ;
12 }

Var ’b’ is defined in a new scope
Var ’b’ is dropped when it goes out of scope
Does not compile!
Is var ’a’ available?

©PASCALVANDAM.COM, 2025 94

How to solve ownership move problems?

For primitive types the copy trait is implemented and automatically called upon
assignment

All integers
All floats
Booleans
Char
String literals &str

©PASCALVANDAM.COM, 2025 95

How to solve ownership move problems?

For compound types like String, Vec etc. there are two solutions:
Using the clone method if implemented
Use borrowing

� code/ownership-4/src/main.rs �

1 // ownership_3
2
3 fn main() {
4
5 let a = String::from("one");

6 let b = a.clone();
7
8 println!("a == {0} and b == {1}",a,b) ;
9 }

©PASCALVANDAM.COM, 2025 96

Manually implementing the Clone trait

We can implement the Clone() trait manually:

� code/ownership-6/src/main.rs �

1 #[derive(Debug)]
2 struct Person {
3 first_name: String,
4 nr_of_children: i32,
5 childrens_ages: Vec<i32>,
6 }
7
8 impl Clone for Person {

9 fn clone(&self) -> Self {
10 Person {

11 first_name: self.first_name.clone(),
12 nr_of_children: self.nr_of_children,

13 childrens_ages: self.childrens_ages.clone(),
14 }
15 }
16 }

©PASCALVANDAM.COM, 2025 97

Deriving the clone method on a datatype

For compound types like structs etc we can use the #[derive(Clone)] macro

� code/ownership-5/src/main.rs �

1 #[derive(Clone, Debug)]
2 struct Person {
3 first_name: String,
4 nr_of_children: i32,
5 childrens_ages: Vec<i32>,
6 }
7
8 fn main() {
9 let person1 = Person {

10 first_name: "Pascal".to_string(),
11 nr_of_children: 4,
12 childrens_ages: vec![8, 17, 19, 20],
13 };
14
15 let person2 = person1.clone();

16 println!("{:?}", person2);

17 println!("{:?}", person1);
18 }

©PASCALVANDAM.COM, 2025 98

Insight: compound type of primitives

How to solve the move issue for a compound type consisting only of primitives?

� code/ownership-7/src/main.rs �

1 #[derive(Debug)]
2 struct Complex {
3 real_part: f64,
4 img_part: f64,
5 }
6
7 fn main() {
8 let c1 = Complex {
9 real_part: 0.3,

10 img_part: 2.0,
11 };
12
13 let c2 = c1;

14 println!("{:#?} {:#?}", c1, c2);
15 }

©PASCALVANDAM.COM, 2025 99

Insight: compound type of primitives

Solution; implement/derive the Copy trait:

� code/ownership-7a/src/main.rs �

1 #[derive(Debug, Copy, Clone)]
2 struct Complex {
3 real_part: f64,
4 img_part: f64,
5 }
6
7 fn main() {
8 let c1 = Complex {
9 real_part: 0.3,

10 img_part: 2.0,
11 };
12
13 let c2 = c1;

14 println!("{:#?} {:#?}", c1, c2);
15 }

©PASCALVANDAM.COM, 2025 100

Concept of Borrowing

Borrowing is the concept of trying to ease the burden of ownership movement.
Avoiding the move of ownership
Providing a reference to the data
A receiver of a reference can temporary use the value without taking ownership
of it
A reference is passed using by using the & prefix

� code/borrowing-1/src/main.rs �

1 // borrowing_1
2
3 fn main() {
4
5 let a = String::from("one");
6 let b = &a ;
7
8 println!("a == {} and b == {}", a,b) ;
9 }

©PASCALVANDAM.COM, 2025 101

Borrowing Rules - 1/4

At any time there maybe any nr of immutable references at the same time als longs
as there is no mutable reference.

� code/borrowing-2/src/main.rs �

1 // borrowing_2 - multi immutable borrows
2
3 fn main() {
4
5 let a = String::from("Hello ");
6 let r1 = &a ;
7 let r2 = &a ;
8 let r3 = &a ;
9

10 println!("a == {} and r1 = {}, r2 = {}, r3 = {}", a,r1,r2,r3) ;

©PASCALVANDAM.COM, 2025 102

Borrowing Rules - 2/4

A reference will always at all times point to a valid value

� code/borrowing-3/src/main.rs �

1 // borrowing_2 - borrow should point to valid data
2
3 fn main() {

4 let s = String::from("Hello ");
5 let b = &s;
6
7 println!("s == {}", s);

8 println!("b == {}", s);
9

10 drop(s);

11 println!("b == {}", b);
12 }

This does not compile

©PASCALVANDAM.COM, 2025 103

Borrowing Rules - 3/4

References cannot live longer than their owners

� code/borrowing-4/src/main.rs �

1 // borrowing_4 - a reference cannot outlive the owner's data
2
3 fn main() {
4
5 let r;
6
7 {
8 let x = 5;
9 r = &x;

10 }

This does not compile

©PASCALVANDAM.COM, 2025 104

Borrowing Rules - 4/4

There can only be one mutable reference to a variable at the same time

� code/borrowing-5/src/main.rs �

1 // borrowing_5 - there can only be one mutable borrow
2
3 fn main() {
4 let mut a = [1, 2, 3, 4];

5 println!("{:?}", a);
6 {
7 let b = &mut a[0..2];
8 // let c = &mut a[3];

9 println!("b: {:?}", b); // [1, 2]
10 b[0] = 42;

11 println!("b: {:?}", b); // [42, 2]

12 println!("a: {:?}", a);
13 }

14 println!("a: {:?}", a); // [42, 2, 3, 4]
15 }

This does not compile

©PASCALVANDAM.COM, 2025 105

Rust Tuples

Rust Tuples

Tuples
Compound type
Sequences of elements
Heterogenous
Fixed length
Printed using debug trait

©PASCALVANDAM.COM, 2025 107

Usage of tuples

How to use tuples in Rust?

� code/tuples-1/src/main.rs �

1 // Example of the use of tuples in Rust
2
3 fn main() {

4 let person_data = ("Hector", 48, "72kg", "181cm");

5 println!("{} is aged {}",person_data.0,person_data.1);
6
7 let solutions: (f64, f64) = (-1.0,2.0);

8 let (x1, x2) = solutions;

9 println!("x1 = {}, x2= {}",x1,x2);
10 }

©PASCALVANDAM.COM, 2025 108

Rust Arrays

Rust Arrays

Arrays
Homogenous sequence of elements
Fixed length
Elements accessed by index nr
First element is zero

©PASCALVANDAM.COM, 2025 110

Usage of Arrays

How to use arrays in Rust?
Element addressing using [n]
Printing using debug trait
Printing by iterating over array
Use .len() to get nr of elements

©PASCALVANDAM.COM, 2025 111

Usage of Arrays

� code/arrays-1/src/main.rs �

1 fn main() {
2
3 let mut my_array: [i32;4] = [0,1,2,3];
4 let days = ["Mo","Tu","We","Th","Fr","Sa","Su"];
5
6 println!("{:?}",days);

7 println!("Day 1: {}",days[0]);
8
9 for (i, d) in days.iter().enumerate() {

10 println!("element {} {} ",i,d);
11 }
12
13 for n in my_array.iter_mut() {
14 *n = *n * 2;
15 }
16
17 println!("{:?}",my_array);
18
19 println!("A week has {} days.",days.len());
20 }

©PASCALVANDAM.COM, 2025 112

Rust Strings

Rust Strings

String literals &str
Primitive type
Fixed size
Have the copy trait
Are borrowed
Value of string is known at compile-time
Immutable
Non-zero terminated

©PASCALVANDAM.COM, 2025 114

Usage of &str

How to use literal strings \&str in Rust?
Created by assigning a literal string to a variable

� code/str-1/src/main.rs �

1 fn main() {
2
3 let my_str = "This is a literal string";

4 println!("{}",my_str);
5
6 }

©PASCALVANDAM.COM, 2025 115

Rust Strings

String objects String
Strings are growable
Strings have no copy trait
Strings are owned
Encoded in UTF-8
Allocated on the heap

©PASCALVANDAM.COM, 2025 116

Creating String objects

How to create object Strings in Rust?
Create an empty String
Creating an initialized String object
Converting from a string literal \&str

� code/string-1/src/main.rs �

1 fn main() {
2 // Creating an empty String object

3 let mut s1 = String::new();

4 s1.push_str("Hello ");

5 s1.push_str("Rustaceans");

6 println!("{}",s1);
7 // Creating an initialized String object

8 let s2 = String::from("My initialized string");
9 // Creating a string object by converting a &str

10 let str = "Another string";

11 let s3 = str.to_string();
12 }

©PASCALVANDAM.COM, 2025 117

Additional methods on String objects

There are quite a few more methods on String objects we can use:
s.capacity() Returns the capacity of the String.
s.length() Returns the capacity of the String.
s.trim() Remove leading/trailing whitespaces
s.contains() Find substring in String
s.replace() Replaces substring in String

� code/string-2/src/main.rs �

1 fn main() {

2 let s1 = String::from("Hello Gophers");
3 let look_for = "Gophers";
4 let replace_with = "Rustaceans";

5 let r1 = s1.replace(look_for,replace_with);

6 println!("{} len = {}, cap = {}",s1,s1.len(),s1.capacity());

7 println!("{} len = {}, cap = {}",r1,r1.len(),r1.capacity());
8 }

©PASCALVANDAM.COM, 2025 118

Iterating over String objects 1/3

Iterate over words in a String:

� code/strings-3/src/main.rs �

1 fn main() {

2 let s1 = String::from("In Rust we trust");

3 for word in s1.split_whitespace() {

4 println!("- {}",word);
5 }
6 }

©PASCALVANDAM.COM, 2025 119

Iterating over String objects 2/3

Iterate using a separator:

� code/strings-4/src/main.rs �

1 fn main() {

2 let s1 = String::from("Perlmonks,Pythonistas,Gophers,Rustaceans");

3 for word in s1.split(',') {

4 println!("- {}",word);
5 }
6 }

©PASCALVANDAM.COM, 2025 120

Iterating over String objects 3/3

Iterate over individual characters in a String:

� code/strings-5/src/main.rs �

1 fn main() {

2 let s1 = String::from("Hello Rustaceans!");

3 for c in s1.chars() {

4 print!("{} ",c);
5 }
6 }

©PASCALVANDAM.COM, 2025 121

Updating / Growing Strings

One can update/grow a string by:
s.push Adds a UNICODE character to the string
s.push_str) Concatenates a string to the string
+ operator Adds a string slice (\&str) to the string
format! This macro returns a formatted string slice

� code/strings-6/src/main.rs �

1 // Updating / growing Strings
2
3 fn main() {

4 let mut s1 = String::from("Welcome");

5 println!("{} {:p}",s1.capacity(),&s1);

6 let mut s3 = String::from("BMW");

7 println!("{} {:p}",s3.capacity(),&s3);
8
9 s1.push(' ');

10 println!("{} {:p}",s1.capacity(),&s1);

©PASCALVANDAM.COM, 2025 122

Slicing Strings

One can slice strings:

� code/strings-7/src/main.rs �

1 fn main() {

2 let s1 = String::from("Learning Rust");
3 let slice1 = &s1[9..];

4 println!("{}",slice1);
5 }

©PASCALVANDAM.COM, 2025 123

Rust Conditionals

Rust Conditionals

Rust has 2 conditionals in 4 variants:
if/else

let/if

match

match/if

©PASCALVANDAM.COM, 2025 125

If conditionals

The if and if/else conditional does not differ much from other C like languages
No parentheses needed
Tail expressions are possible/recommended

� code/conditionals-1/src/main.rs �

1 fn main() {
2 let lang = "Rust";
3
4 if lang == "Rust" {

5 println!("We are learning Rust");
6 } else {

7 println!("We are learnning something else");
8 }
9 }

©PASCALVANDAM.COM, 2025 126

If let expressions

Remember that in Rust it’s either an expression or a statement

let expressions allow conditional assignment to variables
Blocks {} can also contain a tail expression

� code/conditionals-2/src/main.rs �

1 use chrono::{Timelike, Utc};
2
3 fn do_something() {

4 println!("Busy")
5 }
6
7 fn main() {

8 let now = Utc::now();

9 let (is_pm, hour) = now.hour12();

10 let min = now.minute();
11
12 // If expression to determine AM/PM string
13
14 let md = if is_pm { "PM" } else { "AM" };
15
16 println!("It is {}:{} {} UTC", hour, min, md);

©PASCALVANDAM.COM, 2025 127

Match expressions

The match expression in rust ressembles a switch statement in C
Match expressions are much flexible
Here ”_” ressembles the default clause

� code/conditionals-3/src/main.rs �

1 // Conditionals-3 Match Expression
2
3 fn main() {
4 let code = 3;
5
6 match code {

7 0..=4 => println!("All good"),

8 5 => println!("OSI Layer 8 problem"),

9 6 | 10 => println!("Printer on fire"),

10 _ => println!("Unidentified Error {}", code),
11 }
12 }

©PASCALVANDAM.COM, 2025 128

Match let expressions

The match expression also has it’s variant

� code/conditionals-4/src/main.rs �

1 fn main() {
2 let lang = "Rust";
3
4 // return value of match expression in a variable
5 let programmer = match lang {
6 "Rust" => "Rustacean",
7 "Go" => "Gopher",
8 "Python" => "Pythonista",
9 "Perl" => "Perl Monk",

10 _ => "Unknown",
11 };

12 println!("Some one programming {} is called a {} ", lang, programmer);

©PASCALVANDAM.COM, 2025 129

Match guards

� code/match-3/src/main.rs �

1 struct Item {
2 weight: f64,
3 fragile: bool,
4 }
5
6 fn determine_shipping_cost(item: &Item) -> f64 {
7 match item.weight {
8 w if w < 1.0 && item.fragile => 5.0, // Fragile light items
9 w if w < 1.0 => 3.0, // Non-fragile light items

10 _ if item.fragile => 20.0, // Fragile heavy items
11 _ => 15.0, // Non-fragile heavy items
12 }
13 }
14
15 fn main() {
16 let light_fragile_item = Item {
17 weight: 0.5,
18 fragile: true,
19 };

20 println!(

21 "Light Fragile Item Shipping Cost: ${}",

22 determine_shipping_cost(&light_fragile_item)

23);
24 }

©PASCALVANDAM.COM, 2025 130

Rust Loops

Rust Loops

Rust has 4 looping expressions
The while loop
The while let loop
The indefinite loop

The for .. in .. loop

©PASCALVANDAM.COM, 2025 132

Rust Loops - the while loop

The while loop

� code/loops-1/src/main.rs �

1 use std::{thread, time};

2 fn main() {
3 let mut n = 10;

4 let delay = time::Duration::from_secs(1);
5
6 while n >= 0 {

7 println!("{}",n);

8 thread::sleep(delay);
9 n-=1;

10 }

11 println!("\n\nLift off!");
12 }

©PASCALVANDAM.COM, 2025 133

Rust Loops - the while let loop

The while let loop

� code/loops-2/src/main.rs �

1 fn main() {

2 let mut optional = Some(0);
3
4 while let Some(i) = optional {
5 if i > 9 {

6 println!("Greater than 9, quit!");
7 optional = None;
8 } else {

9 println!("`i` is `{:?}`. Try again.", i);

10 optional = Some(i + 1);
11 }
12 }

©PASCALVANDAM.COM, 2025 134

Rust Loops - the indefinite loop

The indefinite loop

� code/loops-3/src/main.rs �

1 fn main() {
2 let mut n = 0;
3 loop {
4 n += 1;
5 if n == 4 {

6 println!("Skip");
7 continue;
8 }

9 println!("{}", n);
10 if n == 8 {

11 println!("Break out after {}",n);
12 break;

©PASCALVANDAM.COM, 2025 135

Rust loops - break and continue

Rust loops with breaks

Also works with while and for .. in .. loops
Since Rust 1.65 and later works also for any code block

� code/loops-4/src/main.rs �

1 fn main() {
2 let mut i = 0;
3 loop {
4 let mut j = 0;
5 loop {
6 if j == 3 {
7 break;
8 }
9 j+=1;

10 println!("i = {}, j = {}",i,j);
11 }
12 if i == 2 {
13 break;
14 }
15 i+=1;
16 }

©PASCALVANDAM.COM, 2025 136

Rust loops - break and continue with labels

Controlled breaking out and continuing with labels:
Also works with while and for .. in .. loops
Since Rust 1.65 and later works also for any code block

� code/loops-5/src/main.rs �

1 fn main() {
2 let mut i = 0;
3 'outer: loop {
4 let mut j = 0;
5 'inner: loop {
6 if j == 3 {
7 break 'outer;
8 }
9 j+=1;

10 println!("i = {}, j = {}",i,j);
11 }
12 if i == 2 {
13 break;
14 }
15 i+=1;
16 }

©PASCALVANDAM.COM, 2025 137

Rust Loops - the for loop

The for .. in .. loop

� code/loops-6/src/main.rs �

1 use std::{thread, time};

2 fn main() {

3 let delay = time::Duration::from_secs(1);
4 for n in 0..=10 {

5 println!("{}", 10 - n);

6 thread::sleep(delay);
7 }

8 println!("\n\nLift off!");
9 }

©PASCALVANDAM.COM, 2025 138

Rust Loops - the for loop with breaks

The for in .. loop with breaks

This also works for continue of course

� code/loops-7/src/main.rs �

1 use std::{thread, time};

2 fn main() {
3
4 let delay = time::Duration::from_secs(1);
5 for n in 0..=10 {

6 println!("{}", 10 - n);

7 thread::sleep(delay);
8 if n == 7 {

9 println!("Launch abortion at t-{}s", 10 - n);
10 break;
11 }
12 if n == 10 {

13 println!("Lift off!");
14 }
15 }
16 }

©PASCALVANDAM.COM, 2025 139

Rust Enums

Rust Enums

In rust Enums
Are custom type
Composed of variants
Used to enumerate values
Used a lot in Rust (Option, Result)
Naming convention: UpperCamelCase

©PASCALVANDAM.COM, 2025 141

How to use Enums?

To declare, initialize and use Enums in Rust:

� code/enums-1/src/main.rs �

1 // enums-1
2 //

3 #[derive(Debug)]
4 use WeekDays::*
5 enum WeekDays {
6 Monday,Tuesday,Wednesday,Thursday,Friday,Saturday,Sunday
7 }
8
9 fn main() {

10
11 let d1 = Monday ;
12 let d2= Wednesday ;
13
14 println!("{:?} {:?}",d1, d2);
15 }

©PASCALVANDAM.COM, 2025 142

Type of Enums in Rust

Enum types in Rust:
Basic enums
Enums with data
Option enums
Result enums

©PASCALVANDAM.COM, 2025 143

Basic enums

Use case: well defined set of possible values without data:
Days of week
Suite of cards (Spades, Hearts, Diamonds Clubs)

� code/enums-10/src/main.rs �

1 // This brings the variants of the enum into scope
2 use Direction::*;
3
4 #[derive(Debug)]
5 enum Direction {
6 North,
7 South,
8 East,
9 West,

10 }
11
12 fn main() {

13 println!("{:?}", Direction::North);

14 println!("{:?}", South);

15 println!("{:?}", West);

16 println!("{:?}", East);
17 }

©PASCALVANDAM.COM, 2025 144

Enums with data

Use case: Representing different kind of actions/data structures etc.
Different kind of messages in a messaging system

� code/enums-11/src/main.rs �

1 enum Shape {

2 Circle(f64), // f64 represents the radius

3 Rectangle(f64, f64), // Two f64 values represent width and height
4 }
5
6 fn main() {

7 let circle = Shape::Circle(5.0); // A circle with radius 5.0

8 let rect = Shape::Rectangle(4.0, 6.0); // A rectangle with width 4.0 and height 6.0
9

10 // Calculate and print area for each shape

11 print_area(circle);

12 print_area(rect);
13 }
14
15 fn print_area(shape: Shape) {
16 match shape {

17 Shape::Circle(radius) => println!("Circle area: {}", 3.14 * radius * radius),

18 Shape::Rectangle(width, height) => println!("Rectangle area: {}", width * height),
19 }
20 }

©PASCALVANDAM.COM, 2025 145

Option enums

Use case: return values for functions representing both present as well absent
(useful) data

� code/enums-12/src/main.rs �

1 fn find_element(arr: &[i32; 5], value: i32) -> Option<i32> {

2 for &item in arr.iter() {
3 if item == value {

4 return Some(item);
5 }
6 }
7 None
8 }
9

10 fn main() {
11 let numbers = [1, 2, 3, 4, 5];
12
13 match find_element(&numbers, 3) {

14 Some(val) => println!("Found: {}", val),

15 None => println!("Not found"),
16 }
17 }

©PASCALVANDAM.COM, 2025 146

Result enums

Use case: return values for functions representing valid return value or error message

� code/enums-13/src/main.rs �

1 fn divide(numerator: f64, denominator: f64) -> Result<f64, &'static str> {
2 if denominator == 0.0 {

3 Err("Cannot divide by zero!")
4 } else {

5 Ok(numerator / denominator)
6 }
7 }
8
9 fn main() {

10 match divide(10.0, 2.0) {

11 Ok(result) => println!("Result: {}", result),

12 Err(e) => println!("Error: {}", e),
13 }
14
15 match divide(10.0, 0.0) {

16 Ok(result) => println!("Result: {}", result),

17 Err(e) => println!("Error: {}", e),
18 }
19 }

©PASCALVANDAM.COM, 2025 147

Rust Structs

Rust Structs

Structs are like tuples, but in a struct the ’fields’ are named and typed;
Structs belong to the custom-types.
Naming convention: PascalCase / UpperCamelCase

� code/structs-1/src/main.rs �

1 // structs-1

2 fn main() {
3 struct Rectangle {
4 width: f64,
5 length: f64
6 }
7 struct DevLang {
8 name: String,
9 mascot: String,

10 moniker: String,
11 year: u16
12 }
13 }

©PASCALVANDAM.COM, 2025 149

How to initialize and access Structs?

Structs must be declared and initialized in one step like this:

� code/structs-2/src/main.rs �

1 // structs-1

2 fn main() {
3 struct Rectangle {
4 width: f64,
5 length: f64
6 }
7
8 let my_rect = Rectangle { width: 2.0, length: 6.0 };

9 println!("Rectangle perimeter is: {}",my_rect.width*2.0 + my_rect.length*2.0) ;
10 }

©PASCALVANDAM.COM, 2025 150

Nested Structs

In Rust Structs can also be nested in Structs

� code/structs-3/src/main.rs �

1 fn main() {
2 struct Coord { x: u16, y: u16, z: u16 }
3 struct Pixel {
4 c: Coord,
5 color: String
6 }
7
8 let c1 = Coord { x: 1, y: 1, z: 1 };

9 let my_color = String::from("blue");
10
11 let p = Pixel{c: c1, color: my_color};
12
13 println!("{}-{}-{} in {} color",p.c.x, p.c.y, p.c.z,p.color) ;
14 }

©PASCALVANDAM.COM, 2025 151

Tuple Structs

In Rust we use have so called truple structs. Use cases:
To Give Meaning to Primitive Types: struct Point(f64,64)

To differentiate between NewTypes
To implement traits on Tuples

� code/structs-5/src/main.rs �

1 struct MyPair(i32, i32);
2
3 trait PairSum {

4 fn pair_sum(&self) -> i32;
5 }
6
7 impl PairSum for MyPair {

8 fn pair_sum(&self) -> i32 {
9 self.0 + self.1

10 }
11 }
12
13 fn main() {

14 let my_pair = MyPair(5, 7);

15 println!("Sum: {}", my_pair.pair_sum());
16 }

©PASCALVANDAM.COM, 2025 152

Tuple Structs

Unit structs can be used for type-level distinction without holding any data:

� code/structs-6/src/main.rs �

1 struct Guest;
2 struct User;
3 struct Admin;
4
5 fn can_access_dashboard(user: &User) -> bool {
6 true
7 }
8
9 fn can_access_admin_panel(user: &Admin) -> bool {

10 true
11 }
12
13 fn can_access_public_content(_user: &Guest) -> bool {
14 true
15 }
16
17 fn main() {
18 let guest = Guest;
19 let user = User;
20 let admin = Admin;
21
22 println!(
23 "Guest can access public content: {}",

24 can_access_public_content(&guest)

25);

26 println!("User can access dashboard: {}", can_access_dashboard(&user));

©PASCALVANDAM.COM, 2025 153

Rust Vectors

Rust Vectors

Vectors in Rust are the resizable variant of Arrays
Size is unknown
Vectors can grow and shrink
Pointer to data
Length (nr of items)
Capacity

©PASCALVANDAM.COM, 2025 155

How to create Vectors?

Vectors in Rust can be created in two ways:
Using the Vec:new() method
Using the vec! macro

� code/vectors-1/src/main.rs �

1 // vectors-1
2
3 fn main() {

4 let mut v1: Vec<&str> = Vec::new();
5 let v2 = vec!["apples", "oranges", "mangos"];
6
7 v1.push("Rust");

8 v1.push("Go");
9

10 println!("{:?}", v2);

©PASCALVANDAM.COM, 2025 156

How to access data in Vectors?

Data in vectors in rust can be accessed;
Array-like using an index
Using the v.pop() method
Using the v.get() method
Using an iterator

©PASCALVANDAM.COM, 2025 157

How to access data in Vectors?

� code/vectors-2/src/main.rs �

1 // vectors-2
2
3 fn main() {
4 let mut v2 = vec!["apples", "oranges", "mangos"];
5
6 println!("Using index, element 2 = {}",v2[1]);

7 let popped_fruit = v2.pop() ;

8 println!("Popped {}",popped_fruit.unwrap());
9

10 for (i, f) in v2.iter().enumerate() {

11 println!("In position {} we have the fruit {}", i, f);
12 }
13 }

©PASCALVANDAM.COM, 2025 158

Protection against out-of-bounds: index

When trying to access out-of-bounds data, Rust will PANIC. To prevent this:
Use the v.get() method

• If there is data, it will return Some(data)
• If there is no data, it will return None

©PASCALVANDAM.COM, 2025 159

Protection against out-of-bounds: index

� code/vectors-3/src/main.rs �

1 // vectors-3 -- with out-of-bounds handling
2
3 fn main() {
4 let v1 = vec!["apples", "oranges", "mangos"];
5
6 for n in 0..=4 {
7
8 match v1.get(n) {

9 Some(x) => println!("Value at given index {} {}", n,x),

10 None => println!("Sorry, can't do -> index {} is out-of-bounds",n)
11 }
12 }
13 }

©PASCALVANDAM.COM, 2025 160

Finding out the vector is empty : pop()

When we try to pop beyond the last element in the vector, Rust will not PANIC. But,
how to find out there is no data anymore?

Using the v.pop() method
• If there is data, it will return Some(data)
• If the vector is empty, it will return None

This is a common pattern

� code/vectors-4/src/main.rs �

1 // vectors-4 -- Popping till the vector is empty
2
3 fn main() {
4 let mut v1 = vec!["apples", "oranges", "mangos", "kiwis"];
5
6 while let Some(value) = v1.pop() {

7 println!("Popped fruit: {}", value);
8 }
9 }

©PASCALVANDAM.COM, 2025 161

Adding elements to a vector

To add elements to a vector:
Using the v.pop() method

• If there is data, it will return Some(data)
• If the vector is empty, it will return None

This is a common pattern

©PASCALVANDAM.COM, 2025 162

Adding elements to a vector

� code/vectors-5/src/main.rs �

1 // vectors-5 -- Adding items to a vector
2
3 fn main() {
4 let mut v1 = vec!["apples", "oranges", "mangos"];
5
6 v1.push("Bananas");

7 v1.push("Ananas");

8 v1.push("Jackfruit");
9

10 for f in v1.iter() {

11 println!("Item: {}",f);
12 }
13 }

©PASCALVANDAM.COM, 2025 163

Removing elements to a vector

To remove elements from a vector:
v.pop() removes the last element
v.remove() removes the element at given index nr

©PASCALVANDAM.COM, 2025 164

Removing elements to a vector

� code/vectors-6/src/main.rs �

1 // vectors-6 -- Removing elements
2
3 fn main() {
4 let mut v1 = vec!["apples", "oranges", "mangos", "Bananas", "Jackfruit"];

5 println!("{:?}",v1) ;
6
7 v1.pop();

8 v1.remove(0);
9

10 println!("{:?}",v1) ;
11
12 println!("Vector v1; length = {}, capacity = {}",v1.len(), v1.capacity());
13
14 }

©PASCALVANDAM.COM, 2025 165

Iterating and mutating

To iterate and mutate elements in a vector:
User iter.mut() instead of iter()

©PASCALVANDAM.COM, 2025 166

Iterating and mutating

� code/vectors-7/src/main.rs �

1 // vectors-7 -- Iterate & Mutate
2
3 fn main() {
4 let mut v1 = vec!["apples", "oranges", "mangos", "Bananas", "Jackfruit"];
5
6 for i in v1.iter_mut() {
7 *i = "Sold out";
8 }
9

10 for j in v1.iter() {

11 println!("- {}",j);
12 }
13
14 let mut v2 = vec![1,2,3,4,5,6,7,8,9,10];

15 for i in v2.iter_mut() {
16 *i = *i * *i ;
17 }

18 for j in v2.iter() { println!("- {}",j); };

©PASCALVANDAM.COM, 2025 167

Slicing Vectors

We can slice Vectors like we slices Arrays in Rust

� code/vectors-8/src/main.rs �

1 // vectors-8 -- Slicing vectors
2
3 fn main() {
4 let v1 = vec!["apples", "oranges", "mangos", "bananas", "jackfruit"];
5
6 let slice1 = &v1[3..];
7
8 for i in slice1.iter() {

9 println!("{}",i);
10 }
11 }

©PASCALVANDAM.COM, 2025 168

Rust HashMaps

Rust HashMaps

HashMaps in Rust;
Store values by key
Keys can be booleans, integers, strings
Needs Eq and Hash traits
Are growable and shrinkable

©PASCALVANDAM.COM, 2025 170

How to create and initialize HashMaps?

� code/hashmaps-1/src/main.rs �

1 use std::collections::HashMap;
2
3 fn main() {

4 let mut pet_owners = HashMap::new();

5 pet_owners.insert("Pascal", "Tarja");

6 pet_owners.insert("Jarmo", "Nibbit");

7 pet_owners.insert("Sill", "Bowser");
8
9 for (k, v) in &pet_owners {

10 println!(" {} {}", k, v);
11 }
12
13 let res = pet_owners.insert("Jarmo", "Apoe");

14 if res.is_some() {

15 println!("Replacing {} with Apoe...", res.unwrap());
16 }

©PASCALVANDAM.COM, 2025 171

How to access data in HashMaps?

Data in HashMaps in Rust can be accessed;
Using the m.get() method
Using an iterator

� code/hashmaps-2/src/main.rs �

1 use std::collections::HashMap;
2
3 fn main() {

4 let mut pet_owners = HashMap::new();

5 pet_owners.insert("Pascal", "Tarja");

6 pet_owners.insert("Jarmo", "Nibbit");

7 pet_owners.insert("Sill", "Bowser");

8 // pet_owners.insert("Kjell", "Tingelfantje");
9

10 let res = pet_owners.get("Sill");

©PASCALVANDAM.COM, 2025 172

Removing data from HashMaps

Removing data by key from HashMaps

� code/hashmaps-3/src/main.rs �

1 use std::collections::HashMap;
2
3 fn main() {

4 let mut pet_owners = HashMap::new();

5 pet_owners.insert("Pascal", "Tarja");

6 pet_owners.insert("Jarmo","Nibbit");
7
8 if let Some(v) = pet_owners.remove("Jarmo") {

9 println!("Removed Jarmo from hashmap, who owned {}",v);
10 } else {

©PASCALVANDAM.COM, 2025 173

Rust Unions

Rust Unions

We simply keep away from these in this course, unsafe rust is needed here. In other
words.... beyond here are Dragons..

Enum like type
Storage sized for the biggest type
Storage is reused/overwritten

©PASCALVANDAM.COM, 2025 175

Rust Functions

Rust Functions

Functions in Rust
Can return one or multiple return values
Pass arguments by value or by reference
Naming convention is: snake_case

©PASCALVANDAM.COM, 2025 177

Passing by value

Function which passes argument by value

� code/functions-1/src/main.rs �

1 fn print_square(side: f32) {

2 println!("The square of {} is {}", side, side * side);
3 }
4
5 fn print_str(a: &String) {

6 println!("String is: {}", a);
7 }
8
9 fn main() {

10 let s = 12.0;

©PASCALVANDAM.COM, 2025 178

Passing by value

Function which passes argument by reference

� code/functions-2/src/main.rs �

1 fn scale(side: & mut f32, factor: f32) {
2 *side *= factor;
3 }
4
5 fn main() {
6 let factor = 2.5;
7 let mut side: f32 = 12.0;
8
9 print!("Scaling {} ",side);

10 scale(& mut side,factor);

©PASCALVANDAM.COM, 2025 179

Returning a single value

Returning a single value

� code/functions-3/src/main.rs �

1 fn divide(a: f32, b: f32) -> f32 {
2 a/b
3 }
4
5 fn main() {
6 let a: f32 = 8.0 ;
7 let b: f32 = 2.0 ;

8 println!("{} divided by {} gives {}",a,b,divide(a,b));
9

10 }

©PASCALVANDAM.COM, 2025 180

Returning a multiple values

Returning multiple values

� code/functions-5/src/main.rs �

1 // Returns the real solutions for the quadratic equation defined by aX²+bX+c
2 //

3 fn solve(a: f64, b: f64, c: f64) -> (f64, f64) {
4 let discriminant = b * b - 4.0 * a * c;
5 if discriminant < 0.0 {

6 println!("Does not have any real solutions");

7 return (0.0, 0.0);
8 };

9 let d = discriminant.sqrt();

10 let solution1 = (-b + d) / (2.0 * a);

11 let solution2 = (-b - d) / (2.0 * a);

12 (solution1, solution2)
13 }
14
15 fn main() {

16 let (sol1, sol2) = solve(1.0, 3.0, 2.0);

17 println!("sol1 = {}, sol2 = {}", sol1, sol2);
18 }

©PASCALVANDAM.COM, 2025 181

Rust idomatic Error Handling

In Rust the concept of null or nil is not part of the language. Also failure is not an
Option, it’s a Result:

� code/functions-4/src/main.rs �

1 fn divide_deluxe(a: f32, b: f32) -> Result<f32,String> {
2 if b == 0.0 {

3 Err("!! Division by zero".to_string())
4 } else {

5 Ok(a/b)
6 }
7 }
8
9 fn main() {

10 let a: f32 = 8.0;
11 let b: f32 = 2.0;
12
13 let res = divide_deluxe(a,b);
14
15 match res {

16 Ok(v) => { println!("{}",v); }

17 Err(msg) => { println!("Error: {}",msg) ; }
18 }
19 }

©PASCALVANDAM.COM, 2025 182

Rust Methods

Rust Methods

Rust doesn’t have classes, in Rust methods are based upon it’s struct data types.
Methods are functions enclosed in an impl code block
This impl codeblock is referencing the struct the method(s) belong too
A self parameter refers to the struct the methods belong too.
Methods that consult the struct
Methods that change the struct
Static methods
Needed for traits later
Naming convention: snake_case

©PASCALVANDAM.COM, 2025 184

Methods that consult the Struct

Method that only reads the underlying struct

� code/methods-1/src/main.rs �

1 use std::f64::consts::PI;
2 struct Circle { radius: f64 }
3
4 impl Circle {

5 fn perimeter(&self) -> f64 {
6 self.radius*2.0*PI
7 }
8 }
9

10 fn main() {
11 let c = Circle{radius: 2.0};

12 println!("Perimeter of circle with radius {} is {}",c.radius,c.perimeter());
13 }

©PASCALVANDAM.COM, 2025 185

Methods that mutate the struct

Method that changes the underlying struct

� code/methods-2/src/main.rs �

1 use std::f64::consts::PI;
2 struct Circle { radius: f64 }
3
4 impl Circle {

5 fn perimeter(&self) -> f64 {
6 self.radius*2.0*PI
7 }

8 fn scale(&mut self, factor: f64) { self.radius *= factor; }
9 }

10
11 fn main() {
12 let mut c = Circle{radius: 2.0};

13 c.scale(2.0);

14 println!("Perimeter of circle with radius {} is {}",c.radius,c.perimeter());
15 }

©PASCALVANDAM.COM, 2025 186

Static methods

Static method

� code/methods-3/src/main.rs �

1 use std::f64::consts::PI;
2 struct Circle {
3 radius: f64,
4 }
5
6 impl Circle {

7 fn new(r: f64) -> Circle {
8 Circle { radius: r }
9 }

10 fn perimeter(&self) -> f64 {
11 self.radius * 2.0 * PI
12 }
13 }
14
15 fn main() {

©PASCALVANDAM.COM, 2025 187

Rust Traits

Rust Traits

Rust does not do class inheritance, but uses composition instead.
Inheritance is about ’is’; the horse is an animal.
Composition is about ’has’; the horse has 4 legs.
Composition is implemented using nested structs

Generics/polymorphism is implemented using traits

©PASCALVANDAM.COM, 2025 189

Implementing Traits

A sphere is a mathematical body. It is defined by a radius and has a volume and an
area. A Cube is also a mathematical body. Traits define the common interface
between different type of objects. So let’s define the methods that are required for a
Body. This bill of requirements (the interface) is called a trait in Rust.

� code/traits-1/src/main.rs �

8
9 struct Pyramid {

10 side: f64,
11 height: f64,
12 }

©PASCALVANDAM.COM, 2025 190

Implementing Traits

Now we have defined the interface, it’s now time to write the individual methods on
the structs. These methods ’implement’ the methods as required by the Trait ’Body’.

� code/traits-1/src/main.rs �

13
14 trait Solid {

15 fn volume(&self) -> f64;
16 }
17
18 impl Pyramid {

19 fn volume(&self) -> f64 {

20 ((self.side * self.side) * self.height) / 4.0
21 }
22 }
23
24 impl Sphere {

©PASCALVANDAM.COM, 2025 191

Implementing Traits

The goal is now to write a function that is able to handle both Sphere and Cube
projects and in the future probably other objects that satisfy the ’Body’ trait. We
are using Generics for this:

� code/traits-1/src/main.rs �

25 fn volume(&self) -> f64 {

26 (self.radius * self.radius * self.radius) * PI * (4.0 / 3.0)
27 }
28 }
29 impl Cube {

30 fn volume(&self) -> f64 {

©PASCALVANDAM.COM, 2025 192

Implementing Traits

Last part is calling the generic function on structs/objects that satisfy the Body
interface:

� code/traits-1/src/main.rs �

31 self.side * self.side * self.side
32 }
33 }
34
35 // Generic function for Structs implementing the Body trait
36
37 fn volume(Solid: B) -> f64 {

38 B.volume()
39 }
40
41 fn main() {
42 let s = Sphere { radius: 10.0 };

43 println!(
44 "Volume of Sphere with radius {} is {}",
45 s.radius,

©PASCALVANDAM.COM, 2025 193

Rust and OOP

Rust OOP

The four major principles of OOP
Encapsulation
Inheritance
Polymorphism
Abstraction

©PASCALVANDAM.COM, 2025 195

Enapsulation in Rust

Use structs to create custom data types classes
Use pub keyword to make fields public
Methods can be associated with struct using impl

� code/oop-1/src/main.rs �

1 struct Person {
2 pub name: String,
3 age: u8,
4 }
5
6 impl Person {

7 pub fn new(name: String, age: u8) -> Self {
8 Person { name, age }
9 }

10
11 pub fn say_hello(&self) {

12 println!(

©PASCALVANDAM.COM, 2025 196

Inheritance in Rust

Rust doesn’t support inheritance like in traditional OOP languages
Rust favours composition over inheritance
In Rust you can use embedded structs for composition
Trait based generics enable polymorphism and code re-use
Rust supports trait inheritance

©PASCALVANDAM.COM, 2025 197

Polymorphism in Rust

Polymorphism is achieved by using Rust’s trait system
Define a trait
Implement that trait for various types

©PASCALVANDAM.COM, 2025 198

Abtraction

Using structs, enums and traits only to expose relevant data
Using pub and the module system to hide implementation details

©PASCALVANDAM.COM, 2025 199

Default implemtation of a trait

Implementation on trait level
Can be overridden by specific types

©PASCALVANDAM.COM, 2025 200

Operator overloading

Operator overloading use specific traits like
• Add
• Sub
• Mul
• Div

Covered by: std::ops

� code/oop-5/src/main.rs �

1 // Overloading the * operator for scalar multiplication
2 impl<'a> Mul<f64> for &'a Matrix {
3 type Output = Matrix;
4
5 fn mul(self, scalar: f64) -> Matrix {
6 let result = self
7 .data

8 .iter()

9 .map(|row| row.iter().map(|val| val * scalar).collect::<Vec<f64>>())

10 .collect::<Vec<Vec<f64>>>();
11
12 Matrix::new(result)
13 }
14 }
15
16©PASCALVANDAM.COM, 2025 201

Rust Lifetimes

Rust Lifetimes

Rust lifetimes are a need extension to Ownership and Borrowing. They help the Rust
compiler to ensure memory safety. We need lifetime annotations when the
compiler can’t decide on it’s own the lifetime of variables and would risk access to
invalidated data

©PASCALVANDAM.COM, 2025 203

Case 1 - The Rust compiler can decide

In the following case the Rust compiler has all the needed info and can derive the
lifetimes of the variables from the program code itself. No annotations needed.

� code/lifetimes-1/src/main.rs �

1 struct Circle { radius: f64 }
2
3 fn main() {
4 let c1: Circle;
5 {
6 let c2 = Circle{ radius: 5.0};
7 }
8
9 // c2 dropped out of scope, so won't compile

10
11 c1 = &c2;
12 }

Does not compile.

©PASCALVANDAM.COM, 2025 204

Case 2 - Compiler cannot make a decission

In the following case the Rust compiler can’t decide on the lifetimes and needs hints
from us. Hence lifetime annotations will be needed. This Rust program will refuse
to compile

� code/lifetimes-2/src/main.rs �

1 struct Circle { radius: f64, color: String }
2
3 fn largest_circle(c1: &Circle, c2: &Circle)->&Circle{
4 if c1.radius > c2.radius {
5 c1
6 }
7 else {
8 c2
9 }

10 }
11
12 fn main(){

13 let c1 = Circle{ radius: 2.0, color: "yellow".to_string() };

14 let c2 = Circle { radius: 1.0, color: "red".to_string() };

15 let c3 = largest_circle(&c1, &c2);

16 println!("Largest is the {} circle",c3.color);
17 }

©PASCALVANDAM.COM, 2025 205

Case 2 - What is the issue?

� code/lifetimes-3/src/main.rs �

3 fn largest_circle<'a>(c1: &'a Circle, c2: &'a Circle)->&'a Circle{
4 if c1.radius > c2.radius {
5 c1
6 }
7 else {
8 c2
9 }

10 }

The function has 2 reference arguments and returns one of them
It is unknown at compile time which one will be returned
Normally both references get individual lifetimes assigned
Here, they need to have the same lifetime assigned
And so needs the return reference value

©PASCALVANDAM.COM, 2025 206

Case 2 - The solution

We need to assign the same lifetime for both arguments AND the return value:

� code/lifetimes-3/src/main.rs �

1 struct Circle { radius: f64, color: String }
2
3 fn largest_circle<'a>(c1: &'a Circle, c2: &'a Circle)->&'a Circle{
4 if c1.radius > c2.radius {
5 c1
6 }
7 else {
8 c2
9 }

10 }
11
12 fn main(){

13 let c1 = Circle{ radius: 2.0, color: "yellow".to_string() };

14 let c2 = Circle { radius: 1.0, color: "red".to_string() };

15 let c3 = largest_circle(&c1, &c2);

16 println!("Largest is the {} circle",c3.color);
17 }

©PASCALVANDAM.COM, 2025 207

Important notes about lifetime annotations

Lifetime annotations:
do not change the lifetime of references!
specify the relation of lifetimes between references
are never needed for owned variables
naming convention is ' followed by a single lowercase character <'a>
can also be needed in structs containing references

©PASCALVANDAM.COM, 2025 208

Lifetime elision

Lifetime elision is the process in which the Rust compilers tries to determine the
lifetimes of variables automatically.

If lifetime elision is possible, no lifetime annotations are required
If lifetime elision is not possible, we need to annotate these variables
There are three cases/rules where lifetime elision is possible

©PASCALVANDAM.COM, 2025 209

Lifetime elision rules

Each elided lifetime in input position becomes a distinct lifetime parameter
If there is exactly one input lifetime position (elided or not), that lifetime is
assigned to all elided output lifetimes
If there are multiple input lifetime positions, but one of them is &self or
&mut self, the lifetime of self is assigned to all elided output lifetimes.
Otherwise, it is an error to elide an output lifetime

In the latter case we need to help the Rust compile by providing lifetime annotations.

©PASCALVANDAM.COM, 2025 210

Lifetime elision rules - example 1

Each elided lifetime in input position becomes a distinct lifetime parameter

� code/lifetimes-6/src/main.rs �

1 // Each elided lifetime in input position becomes a distinct lifetime parameter.
2 struct Circle { radius: f64, color: String }
3
4 fn largest_circle<'a, 'b>(c1: &'a Circle, c2: &'b Circle)->& Circle{
5 if c1.radius > c2.radius {
6 c1
7 }
8 else {
9 c2

10 }
11 }
12
13 fn main(){

14 let c1 = Circle{ radius: 2.0, color: "yellow".to_string() };

15 let c2 = Circle { radius: 1.0, color: "red".to_string() };

16 let c3 = largest_circle(&c1, &c2);

17 println!("Largest is the {} circle",c3.color);
18 }

©PASCALVANDAM.COM, 2025 211

Lifetime elision rules - example 2

If there is exactly one input lifetime position (elided or not), that lifetime is assigned
to all elided output lifetimes

� code/lifetimes-5/src/main.rs �

1 // If there is exactly one input lifetime position (elided or not),
2 // that lifetime is assigned to all elided output lifetimes.

3 fn last_word (s: &str) -> &str {

4 let b = s.as_bytes();

5 for (n,&c) in b.iter().rev().enumerate() {
6 if c == b' ' {

7 return &s[s.len()-n..];
8 }
9 }

10 s
11 }
12
13 fn main() {
14 let my_sentence = "Famous last words";

15 println!("Last word in '{}' is '{}'",my_sentence,last_word(my_sentence));
16 }

©PASCALVANDAM.COM, 2025 212

Lifetime elision rules - example 3

If there is exactly one input lifetime position (elided or not), that lifetime is assigned
to all elided output lifetimes

� code/lifetimes-4/src/main.rs �

1 fn last_item (s: &str, ch: char) -> &str {

2 let b = s.as_bytes();

3 for (n,&c) in b.iter().rev().enumerate() {
4 if c as char == ch {

5 return &s[s.len()-n..];
6 }
7 }
8 s
9 }

10
11 fn main() {
12 let my_sentence = "apples,oranges,bananas and ananas";

13 println!("Last item in '{}' is '{}'",my_sentence,last_item(my_sentence,','));
14 }

©PASCALVANDAM.COM, 2025 213

Lifetime elision rules - example 4

If there are multiple input lifetime positions, but one of them is &self or &mut self,
the lifetime of self is assigned to all elided output lifetimes.

� code/lifetimes-7/src/main.rs �

1 // If there are multiple input lifetime positions, but one of them is &self or &mut self
2 // the lifetime of self is assigned to all elided output lifetimes.
3 struct Circle { radius: f64, color: String }
4
5 impl Circle {

6 fn colorize (&self, color: &str) -> &str {
7 &self.color
8 }
9

10 }
11
12 fn main(){

13 let c1 = Circle{ radius: 2.0, color: "blank".to_string() };

14 println!("{}",c1.colorize("red"));
15 }

©PASCALVANDAM.COM, 2025 214

Lifetime elision rules - example 5

If the compiler can’t make a decission, we need to provide lifetime annotations

� code/lifetimes-3/src/main.rs �

1 struct Circle { radius: f64, color: String }
2
3 fn largest_circle<'a>(c1: &'a Circle, c2: &'a Circle)->&'a Circle{
4 if c1.radius > c2.radius {
5 c1
6 }
7 else {
8 c2
9 }

10 }
11
12 fn main(){

13 let c1 = Circle{ radius: 2.0, color: "yellow".to_string() };

14 let c2 = Circle { radius: 1.0, color: "red".to_string() };

15 let c3 = largest_circle(&c1, &c2);

16 println!("Largest is the {} circle",c3.color);
17 }

©PASCALVANDAM.COM, 2025 215

Rust Error Handling

Rust error handling

Error types:
Non-recoverable errors
Recoverable errors

©PASCALVANDAM.COM, 2025 217

Non-recoverable errors

Errors that cannot be recovered from:
Out-of-bounds access
Integer division by zero
Assertion failure
Calling .expect or |.unwrap|on an err

Please note that panics happen on a per thread basis.

� code/error-handling-1/src/main.rs �

1 use std::fs;
2
3 fn main() {

4 let content = fs::read_to_string("./Cargo.toml").unwrap();

5 println!("Contents:\n{}", content);
6
7 let _content2 = fs::read_to_string("./Cargo.tonl").expect("Can't read Cargo.tonl");

8 println!("{}", content);
9 }

©PASCALVANDAM.COM, 2025 218

The panic! macro

The panic! macro is there when you want to panic out of a situation in your program:

� code/error-handling-2/src/main.rs �

1 fn main() {
2 let world_needs_reboot: bool = true;
3
4 if world_needs_reboot {

5 panic!("Unable to comply, world needs rebooting...");
6 }
7 }

©PASCALVANDAM.COM, 2025 219

Error is not an option, it’s a Result

Result Enums are the Rust way to communicate on errors
Compare them with the Option enum
Result Enum contains:

• OK(v) if all went ok
• Err(e) in case of unwanted error

� code/error-handling-7/src/main.rs �

1 fn halves_if_even(i: i32) -> Result<i32, String> {
2 if i % 2 == 0 {

3 Ok(i / 2)
4 } else {

5 Err("That's odd".to_string())
6 }
7 }

©PASCALVANDAM.COM, 2025 220

Testing for the kind of error

In Rust ErrorKind can be tested for the kind of error

� code/error-handling-8/src/main.rs �

1 use std::fs::File;
2 use std::io::ErrorKind;
3
4 fn main() {
5 let myfile = "tst.txt";

6 let f = File::open(myfile);
7
8 let f = match f {

9 Ok(file) => file,

10 Err(error) => match error.kind() {

11 ErrorKind::NotFound => match File::create(myfile) {

12 Ok(fc) => fc,

13 Err (e) => panic!("Unable to create file: {:?}",e),
14 },
15 other_error => {

16 panic!("Unable to open file: {:?}",other_error)
17 }
18 }
19 };
20 }

©PASCALVANDAM.COM, 2025 221

Mixing in closures with unwrap_or_else

The unwrap_or_else() method invokes a closure to handle the error.

� code/error-handling-9/src/main.rs �

1 use std::fs::File;
2 use std::io::ErrorKind;
3
4 fn main() {
5
6 let myfile = "tst.txt";

7 let f = File::open(myfile).unwrap_or_else(|error| {

8 if error.kind() == ErrorKind::NotFound {

9 File::create(myfile).unwrap_or_else(|error| {

10 panic!("Issue creating the file {}: {}",myfile,error);

11 })
12 } else {

13 panic!("Problem opening the file {}: {}",myfile,error);
14 }

15 });
16 }

©PASCALVANDAM.COM, 2025 222

Matching Results

One can use match to test for the results
Ok(v)
Err(e)

� code/error-handling-10/src/main.rs �

1 use std::fs::File;
2
3 fn main() {
4 let myfile = "myfile2.txt";
5
6 let f = File::open(myfile);
7
8 let f = match f {

9 Ok(file) => file,

10 Err(e) => panic!("Issue opening file {}: {}",myfile,e),
11 };
12 }

©PASCALVANDAM.COM, 2025 223

Unwrap or Panic

The unwrap method simply:
Returns the Result value wrapped in Ok if no error occured
Panics if the Result was an error

� code/error-handling-11/src/main.rs �

1 use std::fs::File;
2
3 fn main() {
4 let myfile = "myfile2.txt";
5
6 let f = File::open(myfile).unwrap();
7
8 }

©PASCALVANDAM.COM, 2025 224

Unwrap or Panic with custom message

The expect method provides an extra option to supply an accompanying message to
explain the error from the program’s perspective:

� code/error-handling-12/src/main.rs �

1 use std::fs::File;
2
3 fn main() {
4 let myfile = "myfile2.txt";
5
6 let f = File::open(myfile).expect("Unable to open file");
7
8 }

©PASCALVANDAM.COM, 2025 225

Using let match expressions

Example using multiple let match expressions to handle the error(s)

� code/error-handling-13/src/main.rs �

1 use std::fs::File;
2 use std::io;
3 use std::io::Read;
4
5 fn read_name_from_file() -> Result<String, io::Error> {

6 let f = File::open("myfile3.txt");
7
8 let mut f = match f {

9 Ok(file) => file,

10 Err(e) => return Err(e),
11 };
12
13 let mut s = String::new();
14
15 match f.read_to_string(&mut s) {

16 Ok(_) => Ok(s),

17 Err(e) => Err(e),
18 }
19 }

©PASCALVANDAM.COM, 2025 226

Test for errors using is_error method

� code/error-handling-13/src/main.rs �

23
24 if s.is_err() {

25 panic!("We ran into an error reading name from file");
26 } else {

27 println!("We read the following name: {}",s.unwrap());
28 }
29 }

©PASCALVANDAM.COM, 2025 227

Simplyfying with the ? operator

The ? operator:
Returns directly with Err(e) if it’s an error case
Unwraps and continues if there’s no error
Idiomatic Rust for error propagation

� code/error-handling-14/src/main.rs �

1 use std::fs::File;
2 use std::io;
3 use std::io::Read;
4
5 fn read_name_from_file() -> Result<String, io::Error> {

6 let mut f = File::open("myfile3.txt")?;

7 let mut s = String::new();
8
9 match f.read_to_string(&mut s) {

10 Ok(_) => Ok(s),

11 Err(e) => Err(e),
12 }
13 }

©PASCALVANDAM.COM, 2025 228

More simplification

� code/error-handling-15/src/main.rs �

1 use std::fs::File;
2 use std::io;
3 use std::io::Read;
4
5 fn read_name_from_file() -> Result<String, io::Error> {

6 let mut f = File::open("myfile3.txt")?;

7 let mut s = String::new();

8 f.read_to_string(& mut s)?;

9 Ok(s)
10 }
11
12 fn main() {

13 let s = read_name_from_file();
14
15 if s.is_err() {

16 panic!("We ran into an error reading name from file");
17 } else {

18 println!("We read the following name: {}",s.unwrap());
19 }
20 }

©PASCALVANDAM.COM, 2025 229

More simplification

� code/error-handling-15/src/main.rs �

1 use std::fs::File;
2 use std::io;
3 use std::io::Read;
4
5 fn read_name_from_file() -> Result<String, io::Error> {

6 let mut f = File::open("myfile3.txt")?;

7 let mut s = String::new();

8 f.read_to_string(& mut s)?;

9 Ok(s)
10 }
11
12 fn main() {

13 let s = read_name_from_file();
14
15 if s.is_err() {

16 panic!("We ran into an error reading name from file");
17 } else {

18 println!("We read the following name: {}",s.unwrap());
19 }
20 }

©PASCALVANDAM.COM, 2025 230

Ultimate simplification

Chaining can provide even more simplification:

� code/error-handling-16/src/main.rs �

1 use std::fs::File;
2 use std::io;
3 use std::io::Read;
4
5 fn read_name_from_file() -> Result<String, io::Error> {

6 let mut s = String::new();

7 File::open("myfile3.txt")?.read_to_string(& mut s)?;

8 Ok(s)
9 }

10
11 fn main() {

12 let s = read_name_from_file();

13 if s.is_err() {

14 panic!("We ran into an error reading name from file");
15 } else {

16 println!("We read the following name: {}",s.unwrap());
17 }
18 }

©PASCALVANDAM.COM, 2025 231

Rust Closures

Closures in Rust

Closures in Rust are:
closes over it’s environment
anonymous function
Used a lot in other functions, iterators and concurrency

©PASCALVANDAM.COM, 2025 233

Closures

Closures:
If the body consists of a single expression, no {} needed
Return types are not mandatory
Data types are not mandatory
Can capture the environment. Each used external variable is borrowed

©PASCALVANDAM.COM, 2025 234

The need for closures

Trying to sort an array. Using ascending order works out-of-the-box:

� code/closures-2/src/main.rs �

1 fn main() {
2 let mut a = [21, 4, 28, 45, 99, 5, 9];
3
4 println!("{:?}", a);

5 a.sort();

6 println!("{:?}", a);
7 }

©PASCALVANDAM.COM, 2025 235

Sorting in a descending order - solution 1

We can use the alternative sort_by() method that uses a function:

� code/closures-3/src/main.rs �

1 use std::cmp::Ordering;
2
3 fn descending(a: &i32, b: &i32) -> Ordering {
4 if a < b { Ordering::Greater }
5 else { Ordering::Less }
6 }
7
8 fn main() {
9 let mut a = [21, 4, 28, 45, 99, 5, 9];

10
11 println!("{:?}", a);

12 a.sort_by(descending);

13 println!("{:?}", a);
14 }

©PASCALVANDAM.COM, 2025 236

Sorting using a closure as order function

Using closures is more elegant:

� code/closures-5/src/main.rs �

1 use std::cmp::Ordering;
2
3 fn main() {
4 let mut a = [21, 4, 28, 45, 99, 5, 9];
5
6 println!("{:?}", a);

7 a.sort_by(|a, b| {
8 if a < b {
9 Ordering::Greater

10 } else if a > b {
11 Ordering::Less
12 } else {
13 Ordering::Equal
14 }

15 });

16 println!("{:?}", a);

©PASCALVANDAM.COM, 2025 237

Sorting using a std ordering function in a closure

Even more elegant:

� code/closures-6/src/main.rs �

1 fn main() {
2 let mut a = [21, 4, 28, 45, 99, 5, 9];
3
4 println!("{:?}", a);

5 a.sort_by(|a, b| b.cmp(a));

6 println!("{:?}", a);
7 }

©PASCALVANDAM.COM, 2025 238

Functions cannot capture the environment

Functions cannot use let variables of the outside blocks:

� code/closures-4/src/main.rs �

1 fn main() {
2 let five: f64 = 5.0;

3 fn print_f64(x: f64) {

4 print!("{}", x * five);
5 }
6
7 print_f64(3.1);
8 }

©PASCALVANDAM.COM, 2025 239

Several ways to invoke closures

There are several ways closures can be invoked:

� code/closures-7/src/main.rs �

1 fn main() {
2 let factor = 2;
3 let mul = |a| a * factor;

4 print!("{}", mul(4));
5 let mul_ref = &mul;
6
7 println!(
8 " {} {} {} {} {}",

9 (*mul_ref)(4),

10 mul_ref(4),

11 (|a| a * factor)(4),

12 (|a: i32| a * factor)(4),

13 |a| -> i32 { a * factor }(4)

14);
15 }

©PASCALVANDAM.COM, 2025 240

Type inference

Type inference on closures only happens once:

� code/closures-9/src/main.rs �

1 fn main() {
2 let closure = |num| num;
3
4 let var_1 = closure(5);

5 println!("{}", var_1);
6
7 let var_2 = closure(2.5);

8 println!("{}", var_2);
9 }

©PASCALVANDAM.COM, 2025 241

Moving closures

Moving closures take ownership of used ext variables

� code/closures-8/src/main.rs �

1 struct Circle {
2 radius: f64,
3 txt: String,
4 }
5
6 fn main() {
7 let circle = Circle {
8 radius: 1.0,

9 txt: "test".to_string(),
10 };
11 // Closure:
12 let closure = || {

13 println!("radius: {:?}", circle.radius);
14 };

15 closure();

16 println!("radius: {:?}", circle.radius);
17
18 let circle = Circle {
19 radius: 1.0,

20 txt: "test".to_string(),
21 };

©PASCALVANDAM.COM, 2025 242

Rust Generics

Rust generics

The problem we want to solve:

� code/generics-3/src/main.rs �

1 fn get_smallest(numbers: Vec<i32>) -> i32 {
2
3 let mut smallest = numbers[0];
4 for n in numbers {
5 if n < smallest {
6 smallest = n;
7 }
8 }
9 smallest

10 }

11 fn get_smallest_f64(numbers: Vec<f64>) -> f64 {
12
13 let mut smallest = numbers[0];
14 for n in numbers {
15 if n < smallest {
16 smallest = n;
17 }
18 }
19 smallest
20 }
21
22 fn main() {
23 let a = vec![4,52,1,2,3,8,-8,22,42,81];
24 let b = vec![3.1,-2.3,2.8,37.3,21.1];©PASCALVANDAM.COM, 2025 244

Rust generics

With generics:

� code/generics-4/src/main.rs �

1 fn get_smallest<T>(numbers: Vec<T>) -> T {
2
3 let mut smallest = numbers[0];
4 for n in numbers {
5 if n < smallest {
6 smallest = n;
7 }
8 }
9 smallest

10 }
11
12 fn main() {
13 let a = vec![4,52,1,2,3,8,-8,22,42,81];
14 let b = vec![3.1,-2.3,2.8,37.3,21.1];

15 println!("{}",get_smallest(a));

16 println!("{}",get_smallest(b));
17 }

©PASCALVANDAM.COM, 2025 245

Trait Bounds

We try to cover to many types, we need to set bounds

� code/generics-5/src/main.rs �

1 fn get_smallest<T>(numbers: Vec<T>) -> T
2 where
3 T: PartialOrd + Copy,
4 {
5 let mut smallest = numbers[0];
6 for n in numbers {
7 if n < smallest {
8 smallest = n;
9 }

10 }
11 smallest
12 }
13
14 fn main() {
15 let a = vec![4, 52, 1, 2, 3, 8, -8, 22, 42, 81];
16 let b = vec![3.1, -2.3, 2.8, 37.3, 21.1];

17 println!("{}", get_smallest(a));

18 println!("{}", get_smallest(b));
19 }

©PASCALVANDAM.COM, 2025 246

Generic Structs

Generics can also be applied to Structs

� code/generics-6/src/main.rs �

1 struct Pixel<T,U>{ x: T, y: U}
2
3 fn main() {
4 let p1 = Pixel{x: 1,y: 2};
5 let p2 = Pixel{x: 0.5,y: 10.5};
6 let p3 = Pixel{x: 0.5,y: 10};
7 }

©PASCALVANDAM.COM, 2025 247

Generic Enums

And enums:

� code/generics-7/testing/test1.rs �

1 struct Pixel<T,U>{ x: T, y: U}
2
3 fn main() {
4 let p1 = Pixel{x: 1,y: 2};
5 let p2 = Pixel{x: 0.5,y: 10.5};
6 let p3 = Pixel{x: 0.5,y: 10};
7 }

©PASCALVANDAM.COM, 2025 248

Generics and specifics

Combination of Generic and specific impl

� code/generics-8/testing/test1.rs �

1 struct Pixel<T,U>{ x: T, y: U}
2
3 fn main() {
4 let p1 = Pixel{x: 1,y: 2};
5 let p2 = Pixel{x: 0.5,y: 10.5};
6 let p3 = Pixel{x: 0.5,y: 10};
7 }

©PASCALVANDAM.COM, 2025 249

Rust Dynamic Dispatch or Trait Objects

Rust Trait Objects

The problem we want to solve:

� code/dynamic-1/src/main.rs �

19 fn main() {

20 let mut animals: Vec<Box<dyn Speak>> = Vec::new();
21
22 animals.push(Box::new(Dog));

23 animals.push(Box::new(Cat));
24
25 for animal in animals.iter() {

26 animal.speak();
27 }
28 }

©PASCALVANDAM.COM, 2025 251

Rust Trait Objects

With Rust Trait Objects / Dynamic Dispatch:

� code/dynamic-1/src/main.rs �

1 trait Speak {

2 fn speak(&self);
3 }
4
5 struct Dog;
6 impl Speak for Dog {

7 fn speak(&self) {

8 println!("Woof!");
9 }

10 }
11
12 struct Cat;
13 impl Speak for Cat {

14 fn speak(&self) {

15 println!("Meow!");
16 }
17 }
18

©PASCALVANDAM.COM, 2025 252

Rust Trait Objects

With Rust Trait Objects / Dynamic Dispatch:

� code/dynamic-1/src/main.rs �

19 fn main() {

20 let mut animals: Vec<Box<dyn Speak>> = Vec::new();
21
22 animals.push(Box::new(Dog));

23 animals.push(Box::new(Cat));
24
25 for animal in animals.iter() {

26 animal.speak();
27 }
28 }

©PASCALVANDAM.COM, 2025 253

Trait Objects

Performance Implications - runtime
Object Safety
Lifetime Specifiers
Downcasting - reflection

©PASCALVANDAM.COM, 2025 254

Alternatives to Trait Objects

Enums
Generics and Static Dispatch

©PASCALVANDAM.COM, 2025 255

Rust Iterators

Rust iterators

Iterator types:
Adapters -> iterator in -> iterator out
Consumers -> iterator in -> other type out

©PASCALVANDAM.COM, 2025 257

Simple iterator

� code/iterators-1/src/main.rs �

1 fn main() {
2 let v1 = vec![1,2,3,5,7,11,13,17,19];
3
4 let v1_iter = v1.iter();
5
6
7 for i in v1_iter {

8 println!("{}",i);
9 }

10 }

©PASCALVANDAM.COM, 2025 258

Mutable iterator

Use iter_mut() for a mutable iterator
Mind the mut on the vector

� code/iterators-2/src/main.rs �

1 fn main() {
2 let mut v1 = vec![1,2,3,5,7,11,13,17,19];
3
4 let v1_iter = v1.iter_mut();
5
6 for i in v1_iter {
7 *i +=1 ;
8 }
9

10 let v1_iter2 = v1.iter();
11 for i in v1_iter2 {

12 println!("{}",i);
13 }
14 }

©PASCALVANDAM.COM, 2025 259

Iterator consumer: sum

� code/iterators-3/src/main.rs �

1 fn main() {
2 let v1 = vec![1,2,3,5,7,11,13,17,19];

3 let v1_iter = v1.iter();
4
5 let sum: i64 = v1.iter().sum();
6
7 println!("Sum is: {}",sum);
8 }

©PASCALVANDAM.COM, 2025 260

Iterator adapter map

The iterator adapter map applies changes to the set

� code/iterators-4/src/main.rs �

1 fn main() {
2 let v1 = vec![1,2,3,5,7,11,13,17,19];

3 let v1_iter = v1.iter();
4
5 v1.iter().map(|x| x*2);

6 for n in v1.iter() {

7 println!("{}",n);
8 }
9 }

©PASCALVANDAM.COM, 2025 261

Iterator adapter map

The iterator adapter map applies changes to the set

� code/iterators-5/src/main.rs �

1 use std::any::type_name;
2
3 fn print_type_of<T>(_: &T) {

4 println!("{}", std::any::type_name::<T>())
5 }
6
7 fn main() {
8 let v1 = vec![1,2,3,5,7,11,13,17,19];
9

10 let v2: Vec<_> = v1.iter().map(|x| x*2).collect();

©PASCALVANDAM.COM, 2025 262

Iterator adapter filter

The iterator adapter filter selects elements from the set
Mind the use of the double dereference in the selection part

� code/iterators-6/src/main.rs �

1 fn main() {
2 let v1 = vec![1,2,3,-4,5,7,-8,11,-1,13,17,19];
3
4 let mut v2_iter = v1.iter().filter(|x| **x < 0);
5
6 while let Some(v) = v2_iter.next() {

7 println!("{}",v);
8 }
9 }

©PASCALVANDAM.COM, 2025 263

Iterator adapter zip

The zip adapter combines the elements in two sets into a tuple

� code/iterators-7/src/main.rs �

1 fn main() {
2 let emp_no = vec![1, 2, 3];
3 let age = vec![20, 30, 35];
4
5 let iter_emp = emp_no.iter();

6 let iter_age = age.iter();
7
8 let zip_iter = iter_emp.zip(iter_age);
9

10 for item in zip_iter{

11 println!("({}, {})", item.0,item.1);
12 }
13 }

©PASCALVANDAM.COM, 2025 264

Implementing an iterator on a type

Step 1: define the structs and the constructor methods

� code/iterators-8/src/main.rs �

1 struct Counter {
2 count: u64,
3 }
4
5 impl Counter {

6 fn new() -> Counter {
7 Counter { count: 0 }
8 }
9 }

10

©PASCALVANDAM.COM, 2025 265

Implementing an iterator on a type

Step 2: implement the next() method

� code/iterators-8/src/main.rs �

10
11 impl Iterator for Counter {
12 type Item = u64;
13
14 fn next(&mut self) -> Option<Self::Item> {
15 if self.count < 9 {
16 self.count += 1;

17 Some(self.count)
18 } else {
19 None
20 }
21 }
22 }
23

©PASCALVANDAM.COM, 2025 266

Implementing an iterator on a type

Step 3: Testing/using the iterator in main()

� code/iterators-8/src/main.rs �

24 fn main() {

25 let mut c = Counter::new();

26 while let Some(v) = c.next() {

27 println!("{}", v);
28 }
29 }

©PASCALVANDAM.COM, 2025 267

Rust testing

Rust testing

Rust provides means to do:
Unit testing
Integration testing

©PASCALVANDAM.COM, 2025 269

Unit testing

Unit testing in Rust:

� code/testing-1/src/main.rs �

1 pub fn mul(a: i32, b: i32) -> i32 {
2 a * b
3 }
4
5 #[cfg(test)]
6 mod tests {
7 use super::*;
8
9 #[test]

10 fn test_mul() {

11 assert_eq!(mul(5, 2), 10);
12 }
13 }

©PASCALVANDAM.COM, 2025 270

Unit testing

Unit testing is executed with cargo test

Run tests in sequence or concurrent (default)
Run only a subset of tests

©PASCALVANDAM.COM, 2025 271

Table driven testing

Rust does not have a standard way to do table driven testing, but we can implement
it like this:

� code/testing-3/src/main.rs �

11 #[cfg(test)]
12 mod tests {
13 use super::*;
14
15 #[test]

16 fn test_fac() {

17 let tbl: &[(i64, i64)] = &[(0, 1), (1, 1), (2, 2), (3, 6), (4, 24)];
18
19 for (n, expected) in tbl {

20 assert_eq!(fac(*n), *expected);
21 }
22 }
23 }

©PASCALVANDAM.COM, 2025 272

Integration testing

Integration testing is implemented by placing test code in the tests directory in the
root of the package:

� code/testing-4/tests/integration1.rs �

1 use testing_4::add;
2 #[test]

3 fn test_add() {

4 assert_eq!(add(3, 2), 5);
5 }

©PASCALVANDAM.COM, 2025 273

Rust benchmarking

Rust benchmarking

Rust provides means to benchmark code:
Rust native (not stable, nightlies)
Criterion package

©PASCALVANDAM.COM, 2025 275

Benchmarking with Criterion

Benchmarking with Criterion in rust:
External crate
Derived from Haskell criterion tool
Creates useful reports

©PASCALVANDAM.COM, 2025 276

Setting up Criterion

To setup Criterion for benchmarking we need to:
Configure Cargo.toml

Import the Criterion crate
Create a benches directory with Benchmark tests

©PASCALVANDAM.COM, 2025 277

Cargo.toml for Criterion

We need to configure Cargo.toml for Criterion:
Add the criterion package
Configure criterion package (html-reports)
Disable internal benchmarking (harnass)
Name our bechmarking set

©PASCALVANDAM.COM, 2025 278

Configuring Cargo.toml for Criterion

The Cargo.toml file for benchmarking with Criterion

� code/simple-bench/Cargo.toml �

1 [package]
2 name = "simple-bench"
3 version = "0.1.0"
4 edition = "2021"
5
6 # See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
7
8 [dependencies]
9

10 [dev-dependencies]
11 criterion = { version="0.4.0", features=["html_reports"] }
12
13 [[bench]]
14 name = "simple-bench"
15 harness = false

©PASCALVANDAM.COM, 2025 279

Example lib.rs

The example code to benchmark:

� code/simple-bench/src/lib.rs �

1 pub fn minus_one(number: i32) -> i32 {
2 number - 1
3 }
4
5 #[cfg(test)]
6 mod tests {
7 use super::*;
8 #[test]

9 fn test_minus_one() {

10 assert_eq!(minus_one(1), 0);
11 }
12 }

©PASCALVANDAM.COM, 2025 280

The benchmark code in benches

The Benchmark code is written in rust files in the benches directory in the crate’s root:

� code/simple-bench/benches/simple-bench.rs �

1 use simple_bench::minus_one;
2 use criterion::BenchmarkId;
3 use criterion::Criterion;
4 use criterion::{criterion_group, criterion_main};
5
6 fn minus_one_benchmark(c: &mut Criterion) {
7 let size: usize = 1024;
8
9 c.bench_with_input(BenchmarkId::new("Simple bench", size), &size, |b, &s| {

10 b.iter(|| minus_one(1));

11 });
12 }

13 criterion_group!(benches, minus_one_benchmark);

14 criterion_main!(benches);

©PASCALVANDAM.COM, 2025 281

Running the benchmark

Run the benchmark using: cargo bench

Reports are in target/criterion/report

©PASCALVANDAM.COM, 2025 282

Rust Module System

Rust Module System

To make projects/code manageable, Rust provides:
Crates
Packages
Modules
Paths

©PASCALVANDAM.COM, 2025 284

Crates

Crates in Rust:
are the smallest amount of code for Rust
are a single source code file
can contain modules
come in two types

• Binary crate
• Library crate

©PASCALVANDAM.COM, 2025 285

Binary crates

Rust binary crates:
are programs you can compile
have a main() function
are create using cargo create <crate-name>

� code/crates-1/src/main.rs �

1 // Example of a binary crate
2
3 fn main() {

4 println!("Hello, world!");
5 }

©PASCALVANDAM.COM, 2025 286

Library crates

Rust library crates:
don’t have a main() function
do not compile into an executable
contain functionaly to be shared with multiple projects
can be created using cargo new <name> --lib

When Rustaceans mention crate, they mean library crates.

� code/crates-2/src/lib.rs �

1 pub fn add(left: usize, right: usize) -> usize {
2 left + right
3 }
4
5 #[cfg(test)]
6 mod tests {
7 use super::*;
8
9 #[test]

10 fn it_works() {

©PASCALVANDAM.COM, 2025 287

Packages

A Rust package:
is bundle of one or more crates
contains a Cargo.toml file
contains 1 or many binary crates
contains only one library crate

©PASCALVANDAM.COM, 2025 288

Modules

A rust module
give your code structure
control visibility of the items in them (pub/priv)
contains items like

• Functions, Types, Traits, Impl blocks
• Macros, Constants, Statics
• Imports, modules, Ext blocks and crates etc.

� code/shaper/src/shapes.rs �

1 use std::f64::consts::PI;
2 pub struct Circle { pub radius: f64 }
3
4 impl Circle {

5 pub fn perimeter(&self) -> f64 {
6 self.radius*2.0*PI
7 }
8 }

©PASCALVANDAM.COM, 2025 289

Paths

Paths in rust:
Absolute path to an item
Relative path to an item

� code/crates-4/src/lib.rs �

1 mod front_of_house {
2 pub mod hosting {

3 pub fn add_to_waitlist() {}
4 }
5 }
6
7 pub fn eat_at_restaurant() {
8 // Absolute path

9 crate::front_of_house::hosting::add_to_waitlist();
10

©PASCALVANDAM.COM, 2025 290

Rust Threads

Rust threads

Error types:
Std only supports 1:1 model
Green threads (N:M) available in external crates

©PASCALVANDAM.COM, 2025 292

Creating threads

Threads are created using the thread::spawn() function
Functions
Closures

� code/concurrency-1/src/main.rs �

1 use std::thread;
2 use std::time::Duration;
3
4
5 fn main() {

6 thread::spawn(|| {
7 for n in 1..10 {

8 println!("Spawned thead nr: {}",n);

9 thread::sleep(Duration::from_millis(1));
10 }

11 });
12
13 for n in 1..5 {

14 println!("Main thead nr: {}",n);

15 thread::sleep(Duration::from_millis(1));
16 }

©PASCALVANDAM.COM, 2025 293

Syncing thread execution

To make sure all threads are executed before the main thread exits use join

� code/concurrency-2/src/main.rs �

1 use std::thread;
2 use std::time::Duration;
3
4
5 fn main() {

6 let joinhandle = thread::spawn(|| {
7 for n in 1..10 {

8 println!("Spawned thead nr: {}",n);

9 thread::sleep(Duration::from_millis(1));
10 }

11 });
12
13 for n in 1..5 {

14 println!("Main thead nr: {}",n);

15 thread::sleep(Duration::from_millis(1));
16 }

©PASCALVANDAM.COM, 2025 294

Threads and memory safety challenges 1

� code/concurrency-3/src/main.rs �

1 use std::thread;
2 use std::time::Duration;
3
4
5 fn main() {
6
7 let v1 = vec![1,2,3,4];

8 // let joinhandle = thread::spawn(move || {

9 let joinhandle = thread::spawn(move || {
10 for n in 1..10 {

©PASCALVANDAM.COM, 2025 295

Sharing memory by communicating - channels

� code/concurrency-4/src/main.rs �

1 use std::sync::mpsc;
2 use std::thread;
3
4 fn main() {

5 let (tx, rx) = mpsc::channel();
6
7 thread::spawn(move || {

8 let m = String::from("Message in a bottle");

9 tx.send(m).unwrap();

10 });
11
12 let recv = rx.recv().unwrap();

13 // let recv = rx.try_recv().unwrap();

14 println!("Fetching bottle with content: {}",recv);
15 }

©PASCALVANDAM.COM, 2025 296

Sharing memory by communicating - channels

� code/concurrency-5/src/main.rs �

1 use std::sync::mpsc;
2 use std::thread;
3 use std::time::Duration;
4
5 fn main() {

6 let (tx, rx) = mpsc::channel();
7
8 thread::spawn(move || {
9 let msgs = vec!["I", "sent","an","SOS","to","the","world"];

10
11 for m in msgs {

12 tx.send(m).unwrap();

13 thread::sleep(Duration::from_secs(1));
14 }

15 });
16
17 for recv in rx {

18 println!("Fetching bottle with content: {}",recv);
19 }
20 }

©PASCALVANDAM.COM, 2025 297

Rust Async

Rust Async/Await

Async/Await in Rust provides Cooperative multitasking
Async like sync programming
Similar to async/await & promises in JavaScript
Difference: futures are lazy in Rust

©PASCALVANDAM.COM, 2025 299

Async components

Async
Await
Futures (zero-cost)

©PASCALVANDAM.COM, 2025 300

Async

Async transforms a Rust codeblock into a kind of statemachine that implement the
Future trait:

Async Fn
Async Block
Both return the value implementing a Future trait

� code/async-3/src/main.rs �

1 async fn add(a: u32, b: u32) -> u32 {
2 a + b
3 }
4
5 fn main() {

6 let result: impl Future<Output: u32> = add(2, 3);
7 async {
8 // Code
9 };

10 }

©PASCALVANDAM.COM, 2025 301

Await

Await is the mechanism to run a Future.
Asynchrononously (a)waits for the future to complete
Not ready -> Yields the current thread
Can only be used in async fn or async block

� code/async-4/src/main.rs �

1 async fn add(a: u32, b: u32) -> u32 {
2 a + b
3 }
4
5 fn main() {

6 let result: impl Furute<Output=u32> = add(2, 3);
7 async {
8
9 // Waiting for the Future to complete (async)

10 let data: u32 = result.await;
11 // Rest of the code
12 };
13 }

©PASCALVANDAM.COM, 2025 302

Futures

Futures in Rust
Zero cost (Polling)
Created by invoking async fn

Invoking does not schedule the fn -> lazy
An await on the future

• Executor takes the future
• Drive/run’s it to completion
• Calling poll| when progress can be made

©PASCALVANDAM.COM, 2025 303

Bare demo of Async

� code/async-5/src/main.rs �

1 use futures::executor::block_on;
2 use async_std::task;
3 use std::time::Duration;
4
5
6 async fn func_1() {
7 for i in 1..10 {

8 print!("f1 ");
9 if i == 5 {

10 task::sleep(Duration::from_secs(2)).await;
11 }
12 }
13 }
14
15 async fn func_2() {
16 for i in 1..10 {

©PASCALVANDAM.COM, 2025 304

With tokio runtime

� code/async-6/src/main.rs �

1 use std::{thread, time};
2 use tokio::time::{sleep, Duration};
3 use rand::prelude::*;
4 #[tokio::main]
5
6 async fn main() {

7 my_afunc().await;
8 }
9

10 async fn my_afunc() {

11 println!("Async func");

12 let s1 = read_from_db().await;

13 println!("{}",s1);

14 let s2 = read_from_db().await;

15 println!("{}",s2);
16 }
17
18 async fn read_from_db() -> String {

19 let mut rng = rand::thread_rng();

20 let delay = rng.gen_range(0..5);

21 println!("Sleeping for {}s",delay);

22 sleep(Duration::from_millis(delay*1000)).await;

23 "DB data".to_owned()
24 }

©PASCALVANDAM.COM, 2025 305

Rust async Runtimes

Rust does not provide execution context
No runtime, no async
Popular choices:

• tokio
• async-std
• smol

©PASCALVANDAM.COM, 2025 306

Spawning async tasks with Tokio

� code/async-7/src/main.rs �

5 async fn main() {
6
7 let mut handles = vec![];
8
9 for i in 0..2 {

10 let handle = tokio::spawn(async move {

11 my_afunc(i).await;

12 });

13 handles.push(handle)
14 }
15
16 for handle in handles {

17 handle.await.unwrap();
18 }
19 }

©PASCALVANDAM.COM, 2025 307

Containerized Rust

Containerized Rust

Demo
Non-recoverable errors
Recoverable errors

©PASCALVANDAM.COM, 2025 309

