PASCAL VAN DAM

FEBRUARY 12, 2026

INTRODUCTION

m Pascal van Dam, living in Nieuw Bergen (Limburg/NL)

m Owner of Poortier Management B.V / PASCALVANDAM.COM

m Trainer & Consultant Open-Source Solutions:
e Kubernetes & Containers
® Virtualization & Cloud

Go, Rust, NodeJS, C, C++, Perl

Cloud Automation & Orchestration

CI/CD Argo, Flux, Gitlab

Linux Kernel Internals

©PASCALVANDAM.COM, 2025

5 Pascal
Van Dam

“Let us orchestrate your success!" #K8SMastery

INTRODUCTION

TRAINER & STUDENT INTRODUCTION

m Introduce yourself shortly

m Do you have any experience with
Rust

Go, Zig, Haskell

Other programming languages
Containers/Kubernetes

Linux

©PASCALVANDAM.COM, 2025 6

This course:

m Is developed for professionals that are already familiar with a programming
language and would like to get up & running with Rust.

m It will introduce you to the essentials of the Rust programming language
m Enables you to write programs in an idiomatic way in Rust
m Introduces you into the rites and habits of a Rustling/Rustacean

©PASCALVANDAM.COM, 2025 7

Currently there is no official certification program for Rust

If you want to standout in the crowd, solve a non trivial problem (OpenSource) and
publish it on github or gitlab

©PASCALVANDAM.COM, 2025 8

®m Minimal Rust version required: 1.88.0 dd 2025-06-26
m Course updated up to version: 1.88.0 dd 2025-06-26

©PASCALVANDAM.COM, 2025 9

m Introduction to the course

m Introduction to Rust

m Philosophy behind Rust

m Install and configure your Rust environment
m Anatomy of a Rust program

©PASCALVANDAM.COM, 2025

m My first Rust program
m Variables

m Constants

m Primitive datatypes
m Strings

©PASCALVANDAM.COM, 2025

m Arrays

m Ownership & Borrowing
m Conditionals

m Loops

m Functions

©PASCALVANDAM.COM, 2025

Tuples
Structs
Enums
Vectors
HashMaps
Options
Results

©PASCALVANDAM.COM, 2025

m Errorhandling in Rust
m Structs & OOP
m Traits

©PASCALVANDAM.COM, 2025

Closures

Lifetimes

Generics

Rust std library

Crates

Building and publishing your own crates

©PASCALVANDAM.COM, 2025

m Cross compiling

m Concurrency in Rust
m Rust in containers
m Webservers in Rust
m Rust and JSON

m Templating in Rust
®m Smart pointers

©PASCALVANDAM.COM, 2025 16

BEHAVIOUR CATEGORIES IN C/C++

The C and C++ standards define three categories of behaviour that are not fully
specified:
m Implementation-defined behaviour

® The compiler must pick a behaviour and document it
® Consistent and predictable on a given platform

m Unspecified behaviour
® The compiler picks from a set of allowed options
* No obligation to document or be consistent

m Undefined behaviour (UB)

* No requirements whatsoever
® The compiler may assume UB never happens
® Can break your entire program

©PASCALVANDAM.COM, 2025 18

How do they compare?

| Documented? | Consistent? | Dangerous?

Implementation-defined Yes Yes Low
Unspecified No Not necessarily Medium
Undefined No No Extreme

The crucial insight: with UB, the compiler uses the assumption that UB never occurs
to optimize away entire code paths.

©PASCALVANDAM.COM, 2025

Size of fundamental types

code/impl-defined-1/src/main.c

#include <stdio.h>

int main() {
printf("sizeof(int) = %zu\n", sizeof(int));
printf("sizeof(long) = %zu\n", sizeof(long));
// Could be 4 or 8 for long
// The compiler documents what it chose
return 0;

OO U WN -

m The standard only mandates minimum sizes
m Your compiler documents the exact sizes it uses

VANDAM.COM, 2025

Signedness of char

code/impl-defined-2/src/main.c

#include <stdio.h>

int main() {
char ¢ = 200;
printf("c = %d\n", (int)c);
// Could print 268 (unsigned char)
// Could print -56 (signed char)
return 0;

WO U WN =

m Is char signed or unsigned? The standard doesn’t say!
m On x86 Linux (GCC): typically signed
m On ARM: typically unsigned

VANDAM.COM, 2025

Byte order (endianness)

code/impl-defined-3/src/main.c

#include <stdio.h>

int main() {
int x = 6x01026304;
unsigned char *p = (unsigned char *)&x;
printf("First byte: 8x%02x\n", p[0]);
// Little-endian: @x84
// Big-endian: axa1
return 0;

© O] U WN =

m How multi-byte values are stored in memory
m x86/x64: little-endian, ARM: configurable
m Consistent and documented per platform

LVANDAM.COM, 2025

Right-shifting a negative signed integer (before C++20)

code/impl-defined-4/src/main.c

#include <stdio.h>

int main() {
int x = -8;
inty = x> 1;
printf("y = %d\n", y);
// Arithmetic shift: y = -4
// Logical shift: y = large positive nr
return 0;

© 00O U W=

m Before C++20: implementation-defined whether arithmetic or logical
m Most compilers use arithmetic shift (preserving sign)
m (++20 mandates two’s complement and arithmetic right shift

= Y

LVANDAM.COM, 2025

Struct padding and alignment

<> code/impl-defined-5/src/main.c

1 #include <stdio.h>
2
3 struct Example {
4 char a; // 1 byte
5 int b; // 4 bytes
6 char c¢; // 1 byte
7}
8
9 int main() {
10 printf("sizeof = %zu\n",
11 sizeof(struct Example));
12 // Typically 12, not 6!
13 return 6;
14

. J

m The compiler inserts padding for alignment
m Exact layout is implementation-defined

©PASCALVANDAM.COM, 2025

Order of evaluation in expressions

<> code/unspecified-1/src/main.cpp

#include <iostream>

int a() { std::icout «< "a "; return 1; }
int b() { std::cout «< "b "; return 2; }

int main() {
int result = a() + b(Q);
// Could print "a b" or "b a"
// Both WILL be called
// Order is unspecified

OO OTD U WN -

o

m The compiler can evaluate a() or b() first

m This is not UB — both are evaluated, just in unknown order
m No obligation to document or be consistent “ g
YR
©PASCALVANDAM.COM, 2025

[

O OO U W

Order of function argument evaluation

<> code/unspecified-2/src/main.cpp

#include <cstdio>

void foo(int a, int b, int c) {
printf("%d %d %d\n", a, b, c);

int main() {
// Which argument is evaluated first?
// Unspecified! May vary per build
foo(f(), g0, h0);

®m Arguments to a function may be evaluated in any order
m May vary between optimization levels

VANDAM.COM, 2025

9 49
AN

Value of a moved-from object (C++)

<S> code/unspecified-3/src/main.cpp

1 #include <string>
2 #include <iostream>
3
4 int main() {
5 std::string a = "hello world";
6 std::string b = std::move(a);
7
8 // 'a' is in a valid but unspecified state
9 std:rcout <« a.size() <« std::endl;
10 // Could be 8, could be something else

\, J

m After std::move, the source is in a “valid but unspecified” state
m You can call methods on it, but the value is unknown

9 49
AN

©PASCALVANDAM.COM, 2025

Static initialization order across translation units

code/unspecified-4/src/main.cpp

// file_a.cpp
int compute_a();
int global_a = compute_a();

// file_b.cpp

extern int global_a;

int global_b = global_a + 1;

// global_a might not be initialized yet!
// Order across TUs is unspecified

©00 O Uk WN =

m Known as the “Static Initialization Order Fiasco”
m Within one file: top-to-bottom (defined)
m Across files: unspecified! Could change between builds o e

~O

VANDAM.COM, 2025

Heap allocation placement

<> code/unspecified-5/src/main.cpp

#include <iostream>

int main() {
int *a = new int(1);
int *b = new int(2);

// Are a and b adjacent in memory?
// Isa<borb<a?

// Completely unspecified
std:icout «< (a < b) <« std::endl;

delete a;

m The allocator places objects anywhere on the heap
m Result may vary between runs

VANDAM.COM, 2025

d>

~O

=

O OO UE WN -

Signed integer overflow

/> code/ub-1/src/main.c

#include <limits.h>
#include <stdio.h>

int main() {
int x = INT_MAX;
inty = x+1;
printf("y = %d\n", y);
// UB! Compiler assumes this never happens
// May optimize away overflow checks
return 6;

.

m Signed overflow is UB (unsigned wraps — well-defined)
m Compilers exploit this to remove “impossible” branches

VANDAM.COM, 2025

=

QOO U B WN =

Dereferencing a null pointer

/> code/ub-2/src/main.c

#include <stdio.h>

int main() {
int *p = NULL;
*p = 42,
// UB! Anything can happen:
// - Segfault (if you're lucky)
// - Silent corruption
// - Compiler removes surrounding code

return 6;

m The most classic form of UB
m On most OSes you get a segfault, but not guaranteed
m In embedded systems, address 0 may be valid memory!

VANDAM.COM, 2025

99

Out-of-bounds array access

code/ub-3/src/main.c

#include <stdio.h>

int main() {
int arr[3] = {10, 26, 30};
printf("%d\n", arr[51);
// UB! Reading beyond the array
// Could return garbage, crash, or
// compiler removes the function
return 6;

OO U W=

m No bounds checking in C/C++ arrays
m Buffer overflows: the #1 cause of security vulnerabilities

VANDAM.COM, 2025

[
O VOO U R WN -

[
—

12

Use-after-free and dangling pointers

> code/ub-4/src/main.cpp
#include <iostream>
#include <string>
std::string* create() {
std::string s = "hello";
return &s; // address of local variable!
int main() {
std::string *p = create();
std:icout <« *p <« std::zendl;
// UB! 's' destroyed when create() returned
. J

m Dangling pointers: pointing to freed memory
m May “work” in debug builds, crash in release builds

VANDAM.COM, 2025

© 00O U WN =

Data race in multithreaded code

<> code/ub-5/src/main.cpp

#include <thread>
#include <iostream>

int counter = 6;

void increment() {
for (int i = 8; i < 100000; i+)
counter+; // UB! unsynchronized write

int main() {
std::thread t1(increment);
std::thread t2(increment);
t1.join(); t2.join();
std::cout <« counter <« std::endl;

oP

m Two threads writing without synchronization = UB
m Fix: use std::atomic<int> or std::mutex

VANDAM.COM, 2025

99

Rust’s philosophy: make the compiler catch these bugs
m Implementation-defined — Fixed-size types
® 132, ub4, 32 — no ambiguity
m Unspecified — Defined evaluation order
® Function arguments: left to right
® No “static initialization order fiasco”
® Undefined — Safe Rust has no UB by design
e Ownership prevents use-after-free and data races
® Bounds checking on array/slice access
® No null pointers (Option<T> instead)
® Integer overflow: panic in debug, wrap in release

©PASCALVANDAM.COM, 2025

Rust eliminates ambiguity with explicit types

© 000U WN -

code/rust-impl-1/src/main.rs

fn main() {

let x: i32 = 42; // Always 32-bit signed
let y: u8 = 200; // Always 8-bit unsigned
let z: f64 = 3.14; // Always 64-bit float

// No implicit type conversions!

// let bad: 132 = y; // Does not compile
let good: i32 = y as i32; // Explicit
println!("{x} {good} {z}");

No guessing: i8, 116, 132, 164, 1128
Platform-specific sizes are explicit: isize, usize

m Struct layout controllable with #[repr(C)]

VANDAM.COM, 2025

Null pointer dereference — impossible in safe Rust

<S> code/rust-ub-1/src/main.rs

1 fn main() {

2 // There is no null in Rust!
3 // Instead, use Option<T>:
4 let maybe_value: Option<i32> = None;
5

6 // You MUST handle the None case:
7 match maybe_value {
8 Some(v) = println!("Got: {}", v),
9 None = println!("No value"),
10 }

. J

m Tony Hoare called null his “billion-dollar mistake”
m Rust’s Option<T> makes absence explicit and checked

9 49
AN

VANDAM.COM, 2025

Buffer overflow — caught at runtime in Rust

/> code/rust-ub-2/src/main.rs

fn main() {
let arr = [10, 206, 30];
// println!("{}", arr[5]);
// Panics at runtime:
// "index out of bounds: len is 3
// but the index is 5"

// Safe iteration - no index needed:
for val in &arr {
println!("{}", val);

.

m A panic is not UB — it's a controlled, defined crash
m Iterators avoid the need for manual indexing

VANDAM.COM, 2025

9 49
AN

Data races — prevented at compile time

<S> code/rust-ub-3/src/main.rs
1 use std::thread;
2 use std::sync::atomic::{AtomicI32, Ordering};
3 use std::sync::Arc;
4
5 fn main() {
6 let counter = Arc::new(AtomicI32::new(0));
7 let mut handles = vec![];
8 for _in 0..2 {
9 let ¢ = Arc::clone(&counter);
10 handles.push(thread::spawn(move || {
11 for _ in 0..100.600 {
12 c.fetch_add(1, Ordering::Relaxed);
13 }
14);
15 }
16 for h in handles { h.join().unwrap(); }
17 println!("{}", counter.load(Ordering::Relaxed));
.

ANDAM.COM, 2025

Rust does allow UB — but only inside unsafe blocks

<> code/rust-unsafe-1/src/main.rs

fn main() {
let x: 132 = 42;
let p: *const 132 = &x;

// This is safe:
println!("{}", x);

// This requires unsafe:
unsafe {
println!("{}", *p);

H OO0 U WN -

=

m unsafe is an explicit opt-in to manual memory management
m Marks exactly where to look when things go wrong
m The vast majority of Rust code does not need unsafe O Q

©PASCALVANDAM.COM, 2025

C/C++ gives you power but trusts you completely. Rust verifies.

C/C++ Problem Category Rust Solution
sizeof(int) varies | Impl-defined | Fixed-size types
char signedness Impl-defined | u8/i8 explicit
Evaluation order Unspecified | Left-to-right
Moved-from state | Unspecified | Move = transfer
Null dereference UB Option<T>

Buffer overflow uB Bounds checking
Use-after-free UB Ownership

Data races UB Send/Sync
Signed overflow uB Panic or wrap

©PASCALVANDAM.COM, 2025

INTRODUCTION TO RUST

Started out in 2006 as a personal project by Graydon Hoare
Sponsored by Mozilla since 2009

Opened up to the world in 2010

Stable 1.0 version in 2015

Est. of Rust Foundation in 2021

Named after the fungus: Rust

Moniker of choice: Rustaceans

Mascot: Ferris the Crab

©PASCALVANDAM.COM, 2025

m Tobe PCl: 33rd in 2019, 18th in 2020

m Stack Overflow: Most loved language since 2016

m Systems programming language

m Influenced by: SML, OCaml, C++, Cyclone, Haskell, Lisp and Erlang

m Used by companies like: Amazon, ARM, Discord, Dropbox, Google, Meta and
Microsoft

©PASCALVANDAM.COM, 2025

m Safety -> guaranteed @ compiletime
m Fearless concurrecy
m Blazingly fast speed

©PASCALVANDAM.COM, 2025

m a language with a steep learning curve
m a friendly language

®m a language with a large ecosystem

m a so called expression language

©PASCALVANDAM.COM, 2025 46

Firefox/Mozilla

Linux kernel ext. Linux 6.x
Redox (Microkernel OS)
Tauri

OpenEthereum

Ruffle (flash emulator)
Rustdesk

©PASCALVANDAM.COM, 2025

m Procedural programming? -> Yes
m Object Oriented Programming> -> Yes
m Functional Programming? -> Yes
m Concurrent Programming? -> Yes

©PASCALVANDAM.COM, 2025 48

©PASCALVANDAM.COM, 2025

m No formal language description...

©PASCALVANDAM.COM, 2025

m No formal language description...
m Compile times can take very long...

©PASCALVANDAM.COM, 2025

m No formal language description...
m Compile times can take very long...
m Learning curve can be steep...

©PASCALVANDAM.COM, 2025

m No formal language description...
m Compile times can take very long...
m Learning curve can be steep...

©PASCALVANDAM.COM, 2025

Simple helloworld in Rust

package declaration
fn main()

semicolons
println!

ANDAM.COM, 2025

</> code/rust-helloworld/src/main.rs

fn main() {
println!("Hello, world!");

<>

use std::collections::HashMap;

#[tokio::main]
async fn main() — Result<(), Box<dyn std::error::Error> {

1
2
3
4
5 let client = request::Client::builder()
6 .build()?;

7

8

let res = client
.get("https://httpbin.org/ip")

10 .send()

11 .await?;

12

13 let ip = res

14 j :<HashMap<String, String>()
15 .await?;

16

17 println! ("{:?}", ip);

18 0k(0))

19 }

OPAS ANDAM.COM, 2025

OO~ U W

use warp::{Filter};
use gethostname::gethostname;
use local_ip_address::local_ip;

#[tokio::main]
async fn main() {
let hello = warp::path!("hello" / String)
.map(|name| format!("
Ferris says: hello {} from: {:?} - {:?}\n\n\n",name,gethostname(),local_ip().unwrap()));

let routes =
warp::

t0)
.and(hello);

let (host , port) = ([6,0,0,6], 3030);
println!("Starting server on: {}:{}", host.map(|al a.to_string()).join("."), port);
warp::serve(routes)

.run((host, port))

.await;

ANDAM.COM, 2025

thread;
::time::Duration;

fn main() {
let handle = thread::spawn(|| {
for i in 1..18 {
println!("Number {} from the spawned thread!", i);
thread::sleep(Duration::from_millis(1));

1
2
3
4
5
6
7
8
9

10 b;

11 for i in 1..5 {

12 println!("Number {} from the main thread!", i);
13 thread::sleep(Duration::from_millis(1));

14 }

15 handle. join().unwrap();

16 }

OPAS ANDAM.COM, 2025

STALL AND CONFIGURE YOUR RUST ENVIRONMENT

Installation Options for Linux, UNIX and OSX
m Install from distro repos (apt, yum, dnf)
m Download latest using rustup tool from http://rustup.rs

code/install-linux.sh

Install Rust using the rustup tool on Linux, UNIX and Mac 0S/X

curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh

LVANDAM.COM, 2025

Installation on Windows

m Download rustup-init.exe from https://static.rust-lang.org/rustup/dist/x86_64-
pc-windows-msvc/rustup-init.exe

m And follow the instructions

©PASCALVANDAM.COM, 2025 56

The rustup command gives us access to various functionality of the Rust SDK

©PASCALVANDAM.COM, 2025

The rustup command gives us access to various functionality of the Rust SDK

rustup -V Shows the current rustup version

©PASCALVANDAM.COM, 2025

The rustup command gives us access to various functionality of the Rust SDK

rustup -V Shows the current rustup version
rustup update Updates the Rust toolchain to the latest available version

©PASCALVANDAM.COM, 2025

The rustup command gives us access to various functionality of the Rust SDK

rustup -V Shows the current rustup version
rustup update Updates the Rust toolchain to the latest available version
rustup self update Updates rustup tool

©PASCALVANDAM.COM, 2025

The rustup command gives us access to various functionality of the Rust SDK

rustup -V Shows the current rustup version

rustup update Updates the Rust toolchain to the latest available version
rustup self update Updates rustup tool

rust up check Checks if there are updates

©PASCALVANDAM.COM, 2025

The rustup command gives us access to various functionality of the Rust SDK

rustup -V Shows the current rustup version

rustup update Updates the Rust toolchain to the latest available version
rustup self update Updates rustup tool

rust up check Checks if there are updates

rustup help Provides help to the rustup (sub-commands)

©PASCALVANDAM.COM, 2025

The rustup command gives us access to various functionality of the Rust SDK

rustup -V Shows the current rustup version

rustup update Updates the Rust toolchain to the latest available version
rustup self update Updates rustup tool

rust up check Checks if there are updates

rustup help Provides help to the rustup (sub-commands)

rustup show Shows current toolchain versions

©PASCALVANDAM.COM, 2025

The rustup command gives us access to various functionality of the Rust SDK

rustup -V Shows the current rustup version

rustup update Updates the Rust toolchain to the latest available version
rustup self update Updates rustup tool

rust up check Checks if there are updates

rustup help Provides help to the rustup (sub-commands)

rustup show Shows current toolchain versions

rustup doc Shows documentation of current toolchain

©PASCALVANDAM.COM, 2025

The rustup command gives us access to various functionality of the Rust SDK

rustup -V Shows the current rustup version

rustup update Updates the Rust toolchain to the latest available version
rustup self update Updates rustup tool

rust up check Checks if there are updates

rustup help Provides help to the rustup (sub-commands)

rustup show Shows current toolchain versions

rustup doc Shows documentation of current toolchain

rustup self remove Removes rustup and Rust installation

©PASCALVANDAM.COM, 2025

The cargo command gives us access to various functionalities of the Rust toolchain

©PASCALVANDAM.COM, 2025 58

The cargo command gives us access to various functionalities of the Rust toolchain

cargo new Initializes a new Rust project in a new directory

©PASCALVANDAM.COM, 2025 58

The cargo command gives us access to various functionalities of the Rust toolchain

cargo new Initializes a new Rust project in a new directory
cargo init Initializes a new Rust project in existing directory

©PASCALVANDAM.COM, 2025 58

The cargo command gives us access to various functionalities of the Rust toolchain

cargo new Initializes a new Rust project in a new directory
cargo init Initializes a new Rust project in existing directory
cargorun Builds and runs current Rust project

©PASCALVANDAM.COM, 2025 58

The cargo command gives us access to various functionalities of the Rust toolchain

cargo new Initializes a new Rust project in a new directory
cargo init Initializes a new Rust project in existing directory
cargorun Builds and runs current Rust project

cargo build Compiles/builds current Rust project

©PASCALVANDAM.COM, 2025 58

The cargo command gives us access to various functionalities of the Rust toolchain

cargo new Initializes a new Rust project in a new directory
cargo init Initializes a new Rust project in existing directory
cargorun Builds and runs current Rust project

cargo build Compiles/builds current Rust project

cargo clippy Run’s clippy/linter against current project

©PASCALVANDAM.COM, 2025 58

The cargo command gives us access to various functionalities of the Rust toolchain

cargo new Initializes a new Rust project in a new directory
cargo init Initializes a new Rust project in existing directory
cargorun Builds and runs current Rust project

cargo build Compiles/builds current Rust project

cargo clippy Run’s clippy/linter against current project

cargo test Run tests from current project

©PASCALVANDAM.COM, 2025 58

The cargo command gives us access to various functionalities of the Rust toolchain

cargo new Initializes a new Rust project in a new directory
cargo init Initializes a new Rust project in existing directory
cargorun Builds and runs current Rust project

cargo build Compiles/builds current Rust project

cargo clippy Run’s clippy/linter against current project

cargo test Run tests from current project

cargo bench Run benchmarks from current project

©PASCALVANDAM.COM, 2025 58

The cargo command gives us access to various functionalities of the Rust toolchain

cargo new Initializes a new Rust project in a new directory
cargo init Initializes a new Rust project in existing directory
cargorun Builds and runs current Rust project

cargo build Compiles/builds current Rust project

cargo clippy Run’s clippy/linter against current project

cargo test Run tests from current project

cargo bench Run benchmarks from current project

cargo clean Clean up project’s target directory

©PASCALVANDAM.COM, 2025 58

m VScode: (or short code with Rust extensions)
m Intelli)/CLion: add OpenSource Rust plugin
m Vim/Neovim: with vim-rust plugins

©PASCALVANDAM.COM, 2025

Rust so far has had 3 Editions
m Rust 2015 - The original 1.0
m Rust 2018
E Rust 2021
m Rust 2024 - Current edition

©PASCALVANDAM.COM, 2025 60

Rust has three channels providing Rust releases:
m Nightly
m Beta - Every 6 weeks
m Stable - 6 weeks after first Beta

©PASCALVANDAM.COM, 2025 61

MY FIRST RUST PROGRAM

Simple helloworld in Rust

The entrypoint of every Rust program is the
main() function

Reaching the end of main will exit the program

Standard modules are in the Prelude
Other modules are imported with use

Semi columns are mandatory

Prelude contents: https://doc.rust-
lang.org/stable/std/prelude/index.html

VANDAM.COM, 2025

<> code/rust-helloworld/src/main.rs

fn main() {
println!("Hello, world!");

<>

©00 O U WN

Using a module
code/rust-rnd/src/main.rs

use rand::Rng;

fn main() {
let mut range = rand::thread_rng();

let num: i32 = range.gen();

println!("Random: {}", num);

VANDAM.COM, 2025

m The language is case sensitive
m main() is a reserved function
m Blocks are enclosed in curly braces {}

m Semicolons are mandatory
m Except for tail expressions

e With semicolon -> statement
e Without semicolon -> expression

©PASCALVANDAM.COM, 2025 65

m Use |cargo new <prjname>| to setup a new Rust project
® The <prjname> directory will be created

Cargo.toml will be created

Diverse GIT files .gitignore

The src directory

In src/main.rs a template Rust program

©PASCALVANDAM.COM, 2025 66

®m To run, use cargo run
m and check the output in a terminal

©PASCALVANDAM.COM, 2025 67

m To build a Rust program for test/debug, use cargo build
m To build for release use cargo build --release
m The resulting binary will be in the target directory

©PASCALVANDAM.COM, 2025 68

Two options:
m Using rustup
m Using cargo cross

©PASCALVANDAM.COM, 2025 69

m Add Rust target toolchain with rustup
m Add cross compiler toolchain to OS setup
m Use cargo to compile to the new target

1 rustup target add aarché4-unknown-linux-gnu
2 sudo apt-get install gcc-aarché4-linux-gnu g+-aarché4-linux-gnu

©PASCALVANDAM.COM, 2025

m External cargo package
m Uses docker or podman for cross compiling
m Can use gemu for testing

cargo install cross
sudo apt install podman -y

cd march
cross build --target riscvé4gc-unknown-linux-gnu

©PASCALVANDAM.COM, 2025

m Comments in Rust serve 2 purposes:

* Improving readability & clarity of source code
® As input for Rust doc as integrated documentation

<S> code/rust-comment/src/main.rs <S>

code/rust-ml-

comment/src/main.rs

1 // Single line comment
2 1 /*
3| fnmain() { 2 * This is a multiline comment
4 println!("Hello, world!"); 3 *
5 4 */
5
6| fn main() {
7 println!("Hello, world!");
8

ANDAM.COM, 2025

m Rust is a statically typed language
m Variable declarations reserve memory for a specific type and value
m The memory location is identified by the name of the variable

©PASCALVANDAM.COM, 2025

m Variables are by default immutable after assignment of a value
m Immutable variables cannot get a new value assigned
m Variables can be made mutable using the mut prefix

fn main() {

let color = "red";
let mut n=10;

n=42;

println!("n = {}\n",n) ;

OO~ U WN -

©PASCALVANDAM.COM, 2025

® Immutable variables are NOT constants

m Consts are literals and are inlined

m Statics do have a known memory location
m Choose const over static

const MY_NR: usize = 18 ;
static PI2: f64 = 6.28 ;

1
2
3
4 fn main() {
5
6 let mut i = MY_NR ;
7

8 println!("{}",PI2) ;

9

10 while i>0 {

11 println!("{}", i) ;
12 i-=1;

13 }

14 }

©PASCALVANDAM.COM, 2025

A const

m Represents a value that will get inlined

m Always immutable
Has not lifetime inlined
Initialization at compile-time constantexpression
Can be of any type (evaluated at compile time)
No dereferencing possible
Naming convention => SCREAMING_SNAKE _CASE

©PASCALVANDAM.COM, 2025 76

A static
m Represents a memory location
m Immutable by default
m Static lifetime => the lifetime of the program
m Initialization at run-time with constant expression
m Can be of any type even references
m Dereferencing IS possible
m Naming convention => SCREAMING_SNAKE_CASE

©PASCALVANDAM.COM, 2025

RUST PRIMITIVE DATATYPES

Primitive datatypes
B Integers
m Floats
m Bool
m Char
m String literals

©PASCALVANDAM.COM, 2025

m Signed integers (i8, i16, i32, i64, 1128, isize)
m Unsigned integers (u8, u16, u32, u6s, u128, usize)

©PASCALVANDAM.COM, 2025 80

m f32
m f64

©PASCALVANDAM.COM, 2025

m true
m false

©PASCALVANDAM.COM, 2025 82

B Represents a unicode character
m Always 4 bytes in size

©PASCALVANDAM.COM, 2025 83

m Type: &str
m Slice (&[u8]) that always points to a valid UTF-8 sequence

©PASCALVANDAM.COM, 2025 84

OWNERSHIP

Stack vs Heap
m Stack

® Fast
e Size of variable must be known
® LIFO

©PASCALVANDAM.COM, 2025 86

Stack vs Heap
m Heap

* Slow
¢ Size of variable can be unknown
® Who frees up allocated memory?

©PASCALVANDAM.COM, 2025 87

Explicit or implicit memory management:
m Explicit
e Explicit memory allocation for compound types
Lot’s of control
Lot's of bugs
Fast
Used by C, C++

©PASCALVANDAM.COM, 2025 88

Explicit or Implicit memory management:
m Implicit
® Garbage Collection
e Limited control
® No bugs
® Freezes/lag spikes
® Java, JS, Go etc

©PASCALVANDAM.COM, 2025 89

Can’t we have both? Fast and safe?
Yes we can! In Rust, By taking ‘'ownership!

©PASCALVANDAM.COM, 2025

Three ownership rules
m Each variable is the owner of it's initialized value
m Avariable can only have 1 owner at a time
m When the owner goes out of scope, the value will be dropped

©PASCALVANDAM.COM, 2025

Each variable is the owner of it's initialized value

code/ownership-1/src/main.rs

1 // ownership_1

2

31 fnmain() {

4

5 let a: i64 = 42 ;
6 let b = a;

7

8

9

println!("a = {6} and b = {1}",a,b) ;

m Var’a’ and 'b’ are primitive data types and as such allocated on the stack
m Both ’a’ and 'b’ own their own values

9 49
AN

VANDAM.COM, 2025

A variable can only have 1 owner at a time

code/ownership-3/src/main.rs

// ownership_3
fn main() {

let a = String::from("one");
letb=a;

println!("a = {8} and b = {1}",a,b) ;

© 000U WN =

m Var'a’ and 'b’ are compound datatypes and as such allocated on the heap
m Ownership 'a’ =>'b’

m Var 'a’ is not valid anymore

m Does not compile!

99

VANDAM.COM, 2025

When the owner goes out of scope, the value will be dropped

<S> code/ownership-3c/src/main.rs

// ownership_3

fn main() {
let a = String::from("one");
{

let b = a;
println!("b = {6}",b) ;

© 00U WN -

11 println!("b = {}",b) ;
}

m Var'b’ is defined in a new scope

m Var’'b’ is dropped when it goes out of scope

m Does not compile!

m Isvar'a’ available? I

©PASCALVANDAM.COM, 2025

For primitive types the copy trait is implemented and automatically called upon
assignment

m All integers

m All floats

m Booleans

m Char

m String literals &str

©PASCALVANDAM.COM, 2025

For compound types like String, Vec etc. there are two solutions:
m Using the clone method if implemented
m Use borrowing

code/ownership-4/src/main.rs

// ownership_3
fn main() {

let a = String::from("one");
let b = a.clone();

println!("a = {6} and b = {1}",a,b) ;

© 000U WN -

LVANDAM.COM, 2025

© 00O U WN =

We can implement the Clone() trait manually:

> code/ownership-6/src/main.rs
#[derive(Debug)]
struct Person {
first_name: String,
nr_of_children: i32,
childrens_ages: Vec<i32>,
}
impl Clone for Person {
fn clone(&self) — Self {
Person {
first_name: self.first_name.clone(),
nr_of_children: self.nr_of_children,
childrens_ages: self.childrens_ages.clone(),
}
}
}
\

ANDAM.COM, 2025

© 00O Uk WN =

For compound types like structs etc we can use the #[derive(Clone)] macro

<S> code/ownership-5/src/main.rs <S>

#[derive(Clone, Debug)]
struct Person {
first_name: String,
nr_of_children: 132,
childrens_ages: Vec<i32>,

}

fn main() {
let personl = Person {
first_name: "Pascal".to_string(),
nr_of_children: 4,
childrens_ages: vec![8, 17, 19, 26],
iH

let person2 = personl.clone();
println!("{:?}", person2);
println!("{:?}", personl);

VANDAM.COM, 2025

© OO0 U WN -

How to solve the move issue for a compound type consisting only of primitives?

<>

#[derive(Debug)]

struct Complex {
real_part: fé64,
img_part: f64,

fn main() {
let c1 = Complex {
real_part: 6.3,
img_part: 2.0,

’

let c2 = cl;
println! ("{:#2} {:47}", ¢1, c2);

code/ownership-7/src/main.rs <S>

VANDAM.COM, 2025

Solution; implement/derive the Copy trait:

<> code/ownership-7a/src/main.rs

1 #[derive(Debug, Copy, Clone)]
2 struct Complex {
3 real_part: fé64,
4 img_part: f64,
5
6
7 fn main() {
8 let c1 = Complex {
9 real_part: 6.3,
10 img_part: 2.0,
11 H
12
13 let c2 = cl;
14 println! ("{:#2} {:47}", ¢1, c2);
15 }
\. J

e
)&

©PASCALVANDAM.COM, 2025

Borrowing is the concept of trying to ease the burden of ownership movement.
m Avoiding the move of ownership
m Providing a reference to the data
m Areceiver of a reference can temporary use the value without taking ownership
of it
m Areference is passed using by using the & prefix

code/borrowing-1/src/main.rs

// borrowing_1
fn main() {

let a = String::from("one");
let b = & ;

println!("a = {} and b = {}", a,b) ;

© 000U WN =

LVANDAM.COM, 2025

=

QOO U = WN =

At any time there maybe any nr of immutable references at the same time als longs

as there is no mutable reference.

<S> code/borrowing-2/src/main.rs

// borrowing_2 - multi immutable borrows
fn main() {

let a = String::from("Hello ");
let r1 = &a ;
let r2 = &a ;
let r3 = &a ;

println!("a = {} and r1 = {}, r2 = {}, r3 = {}", a,r1,r2,r3) ;

<>

VANDAM.COM, 2025

A reference will always at all times point to a valid value

<S> code/borrowing-3/src/main.rs

1 // borrowing_2 - borrow should point to valid data
2
3 fn main() {
4 let s = String::from("Hello ");
5 let b = &s;
6
7 println!("s = {}", s);
8 println!("b = {}", s);
9
10 drop(s);
11 println!("b = {}", b);
12 }
. J

m This does not compile

e
)&

©PASCALVANDAM.COM, 2025

o

O VOO U A WN =

References cannot live longer than their owners

<> code/borrowing-4/src/main.rs

// borrowing_4 - a reference cannot outlive the owner's data
fn main() {

let r;

\

m This does not compile

VANDAM.COM, 2025

© 000U WN -

There can only be one mutable reference to a variable at the same time

<> code/borrowing-5/src/main.rs
// borrowing_5 - there can only be one mutable borrow
fn main() {
let mut a = [1, 2, 3, 4];
println!("{:7}", a);
{
let b = &mut a[0..2];
// let ¢ = &mut a[3];
println!("b: {23, b); // [1, 2]
b[0] = 42;
println!("b: {:7}", b); // [42, 2]
println!("a: {:7}", a);
}
printlnt("a: {:2}", a); // [42, 2, 3, 4]
. J

m This does not compile

VANDAM.COM, 2025

e

RUST TUPLES

Tuples
m Compound type
m Sequences of elements
m Heterogenous
m Fixed length
m Printed using debug trait

©PASCALVANDAM.COM, 2025

[un

O VWU R WN -

How to use tuples in Rust?

<S> code/tuples-1/src/main.rs

// Example of the use of tuples in Rust

fn main() {
let person_data = ("Hector", 48, "72kg", "181cn");
println!("{} is aged {}",person_data.d,person_data.1);

let solutions: (f64, f64) = (-1.0,2.0);
let (x1, x2) = solutions;
printlnt("x1 = {}, x2= {}",x1,x2);

.

ANDAM.COM, 2025

RUST ARRAYS

Arrays
m Homogenous sequence of elements
m Fixed length
m Elements accessed by index nr
m First element is zero

©PASCALVANDAM.COM, 2025

How to use arrays in Rust?
m Element addressing using [n]
m Printing using debug trait
m Printing by iterating over array
m Use .len() to get nr of elements

©PASCALVANDAM.COM, 2025

<S> code/arrays-1/src/main.rs

© 00O U WN -

fn main() {

let mut my_array: [i32;4] = [0,1,2,3];
let days = ["Mo","Tu","We","Th", "Fr", "Sa" "Su"];

println!("{:?}",days);
printInt("Day 1: {}",days[0]);

for (i, d) in days.iter().enumerate() {

println!(“element {} {} ",i,d);

for n in my_array.iter_mut() {
*n = *n % 2,

}

println!("{:?}",my_array);

println!("A week has {} days.",days.len());

ANDAM.COM, 2025

RUST STRINGS

String literals &str
Primitive type
Fixed size

Have the copy trait

Are borrowed

Value of string is known at compile-time
Immutable

Non-zero terminated

©PASCALVANDAM.COM, 2025

How to use literal strings \&str in Rust?
m Created by assigning a literal string to a variable

code/str-1/src/main.rs

fn main() {

let my_str = "This is a literal string";
println!("{}",my_str);

O UL W=

VANDAM.COM, 2025

String objects String
m Strings are growable
m Strings have no copy trait
m Strings are owned
m Encoded in UTF-8
m Allocated on the heap

©PASCALVANDAM.COM, 2025 116

How to create object Strings in Rust?
m Create an empty String
m Creating an initialized String object
m Converting from a string literal \&str

<> code/string-1/src/main.rs <S>

fn main() {
// Creating an empty String object
let mut s1 = String::new();
s1.push_str("Hello ");
s1.push_str("Rustaceans");
println!("{}",s1);
// Creating an initialized String object
let s2 = String::from("My initialized string");
// Creating a string object by converting a &str
10 let str = "Another string";
11 let s3 = str.to_string();

©00 O U WN -

VANDAM.COM, 2025

There are quite a few more methods on String objects we can use:
m s.capacity() Returns the capacity of the String.

s.length() Returns the capacity of the String.

s.trim() Remove leading/trailing whitespaces

s.contains() Find substring in String

n
n
n
m s.replace() Replaces substring in String

code/string-2/src/main.rs

fn main() {
let s1 = String::from("Hello Gophers'");
let look_for = "Gophers';
let replace_with = "Rustaceans';
let r1 = sl.replace(look_for,replace_with);
printInt("{} len = {}, cap = {}",s1,s1.1len(),s1.capacity());
println!("{} len = {}, cap = {}",r1,r1.1len(),r1.capacity());

WO U WN =

b5

VANDAM.COM, 2025

Iterate over words in a String:

code/strings-3/src/main.rs

fn main() {
let s1 = String::from("In Rust we trust");
for word in s1.split_whitespace() {
println!("- {}",word);

DU W N

VANDAM.COM, 2025

Iterate using a separator:

code/strings-4/src/main.rs

fn main() {
let s1 = String::from("Perlmonks,Pythonistas,Gophers,Rustaceans");
for word in s1.split(',") {
println!("- {}",word);

DU W N

VANDAM.COM, 2025

Iterate over individual characters in a String:

code/strings-5/src/main.rs

fn main() {
let s1 = String::from("Hello Rustaceans!");
for ¢ in sl.chars() {
print!("{} ",c);

DU W N

VANDAM.COM, 2025

o

QLU WN =

One can update/grow a string by:
m s.push Adds a UNICODE character to the string
m s.push_str) Concatenates a string to the string
m + operator Adds a string slice (\&str) to the string
m format! This macro returns a formatted string slice

<P

// Updating / growing Strings

fn main() {
let mut s1 = String::from("Welcome");
println!("{} {:p}",s1.capacity(),&s1);
let mut s3 = String::from("BMW");
println!("{} {:p}",s3.capacity(),&s3);

s1.push(" ');
println!("{} {:p}",s1.capacity(),&s1);

code/strings-6/src/main.rs

<>

\

VANDAM.COM, 2025

b5

One can slice strings:

code/strings-7/src/main.rs

fn main() {
let s1 = String::from("Learning Rust");
let slicel = &s1[9..];
println!("{}",slicel);

Uk W N =

VANDAM.COM, 2025

RUST CONDITIONALS

Rust has 2 conditionals in 4 variants:
m if/else
m let/if
m match
m match/if

©PASCALVANDAM.COM, 2025

The if and if/else conditional does not differ much from other C like languages
m No parentheses needed
m Tail expressions are possible/recommended

code/conditionals-1/src/main.rs

fn main() {
let lang = "Rust";

if lang = "Rust" {
println!("We are learning Rust");
} else {
println!("We are learnning something else");

© 000Uk W

VANDAM.COM, 2025

Remember that in Rust it's either an expression or a statement
m let expressions allow conditional assignment to variables
m Blocks {} can also contain a tail expression

</> code/conditionals-2/src/main.rs <S>
1| use chrono::{Timelike, Utc};
2
3 fn do_something() {
4 println!("Busy")
5
6
7 fn main() {
8 let now = Utc::now();
9 let (is_pm, hour) = now.hour12();
10 let min = now.minute();
11
12 // If expression to determine AM/PM string
13
14 let md = if is_pm { "PN" } else { "AM" };
15
intln! ("It i : UTte", h i d);
16 L println!(is {}:{} {} , hour, min, md); u)
7N\)

©PASCALVANDAM.COM, 2025

The match expression in rust ressembles a switch statement in C
m Match expressions are much flexible

”n n

m Here ”_" ressembles the default clause

<> code/conditionals-3/src/main.rs <>

1 // Conditionals-3 Match Expression
2
3| fnmain() {
4 let code = 3;
5
6 match code {
7 8..=4 = println!("All good"),
8 5 = println!("0SI Layer 8 problem"),
9 6 | 16 = println!("Printer on fire"),
10 _ = println!("Unidentified Error {}", code),
11 }
12 }
. J

e
)&

©PASCALVANDAM.COM, 2025 128

© 00D U R WN =

The match expression also has it's variant

<> code/conditionals-4/src/main.rs

fn main() {
let lang = "Rust";

// return value of match expression in a variable
let programmer = match lang {

"Rust" = "Rustacean",

"Go" = "Gopher",

"Python" = "Pythonista",

"Perl" = "Perl Monk",

_ = "Unknown",

i
println!("Some one programming {} is called a {} ", lang, programmer);

<>

.

LVANDAM.COM, 2025

<P

1 struct Item {

2 weight: fé4,

3 fragile: bool,

4| 1}

5

6| fn determine_shipping_cost(item: &Item) — 64 {

7 match item.weight {

8 wif w < 1.0 & item.fragile = 5.8, // fragile light items
9 wif w< 1.6 = 3.0, // Non-fragile light items
10 _ if item.fragile = 20.8, // Fragile heavy items
11 _=15.0, // Non-fragile heavy items
12 }

13 }

14

15 fn main() {

16 let light_fragile_item = Item {

17 weight: 0.5,

18 fragile: true,

19 ;
20 println!(
21 "Light Fragile Item Shipping Cost: ${}",
22 determine_shipping_cost(&light_fragile_item)
23 ;
24 }

ANDAM.COM, 2025

RUST LOOPS

Rust has 4 looping expressions
m The while loop
m Thewhile let loop
m The indefinite loop
m The for .. in .. loop

©PASCALVANDAM.COM, 2025

The while loop

<> code/loops-1/src/main.rs <S>

1 use std::{thread, time};

2 fn main() {

3 let mut n = 10;

4 let delay = time::Duration::from_secs(1);

5

6 while n = 0 {

7 println!("{}",n);

8 thread::sleep(delay);

9 n-=1;

10 }

11 println!("\n\nLift off!");
12 3}

. J

VANDAM.COM, 2025

The while let loop

<S> code/loops-2/src/main.rs
fn main() {
let mut optional = Some(8);
while let Some(i) = optional {
ifi>9{
println!("Greater than 9, quit!");
optional = None;
} else {
println!(" it is “{:?} . Try again.", i);
optional = Some(i + 1);
}
\. J

VANDAM.COM, 2025

The indefinite loop

<S> code/loops-3/src/main.rs

fn main() {
let mut n = 6;
loop {
n+=1;
ifn=14{
println!("Skip");
continue;

}

println!("{}", n);

ifn=28{
println!("Break out after {}",n);
break;

<>

\

VANDAM.COM, 2025

o
QOO U WN =

11
12
13
14
15
16

Rust loops with breaks
m Also works with while and for .. in .. loops
m Since Rust 1.65 and later works also for any code block

<> code/loops-4/src/main.rs
fn main() {
let mut i = 6;
loop {

let mut j = 6;

loop {

if j =3¢
break;

=1y
printlnt("i = {}, j = {}",1,3);

}
ifi=2{
break;

i+=T;

<>

.

VANDAM.COM, 2025

ik

o
QOO U WN =

11
12
13
14
15
16

Controlled breaking out and continuing with labels:
m Also works with while and for .. in .. loops
m Since Rust 1.65 and later works also for any code block

<S> code/loops-5/src/main.rs
fn main() {
let mut i = 6;
‘outer: loop {

let mut j = 6;

‘inner: loop {

if j =3¢
break 'outer;

=1y
printlnt("i = {}, j = {}",1,3);

}
ifi=2{
break;

i+=T;

<>

.

VANDAM.COM, 2025

ik

The for .. in .. loop

code/loops-6/src/main.rs

use std::{thread, time};
fn main() {
let delay = time::Duration::from_secs(1);
for n in 6..=10 {
println!("{}", 18 - n);
thread::sleep(delay);

© 00O Uk WN =

println!("\n\nLift off!");

VANDAM.COM, 2025

The for in .. loop with breaks
m This also works for continue of course

<S> code/loops-7/src/main.rs
1 use std::{thread, time};
2 fn main() {
3
4 let delay = time::Duration::from_secs(1);
5 for n in 0..=10 {
6 println!("{}", 18 - n);
7 thread::sleep(delay);
8 ifn=7{
9 println!("Launch abortion at t-{}s", 18 - n);
10 break;
11 3}
12 ifn=10{
13 println!("Lift off!1");

VANDAM.COM, 2025

RUST ENUMS

In rust Enums
m Are custom type
m Composed of variants
m Used to enumerate values
m Used a lot in Rust (Option, Result)
m Naming convention: UpperCamelCase

©PASCALVANDAM.COM, 2025

To declare, initialize and use Enums in Rust:

<S> code/enums-1/src/main.rs

1 // enums-1
21 7/
3 #[derive(Debug)]
4 use WeekDays::*
5 enum lWeekDays {
6 Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday
7
8
9| fn main() {
10
11 let d1 = Monday ;
12 let d2= Wednesday ;
13
14 printIn!("{:7} {:7}",d1, d2);
15 }

. J

VANDAM.COM, 2025

Enum types in Rust:
m Basic enums
m Enums with data
m Option enums
m Result enums

©PASCALVANDAM.COM, 2025

OO U WN =

Use case: well defined set of possible values without data:
m Days of week
m Suite of cards (Spades, Hearts, Diamonds Clubs)

<> code/enums-10/src/main.rs <>

// This brings the variants of the enum into scope
use Direction::*;

#[derive(Debug)]
enum Direction {
North,
South,
East,
West,

fn main() {
println!("{:?}", Direction::North);
println!("{:?}", South);
println!("{:7}", West);

println!("{:?}", East);
; 9 9

VANDAM.COM, 2025

OO U WN -

Use case: Representing different kind of actions/data structures etc.

m Different kind of messages in a messaging system

/> code/enums-11/src/main.rs

enum Shape {
Circle(fé4), // fé4 represents the radius
Rectangle(f64, f64), // Two f64 values represent width and height

fn main() {
let circle = Shape::Circle(5.0); // A circle with radius 5.0
let rect = Shape::Rectangle(4.8, 6.0); // A rectangle with width 4.6 and height 6.0

// Calculate and print area for each shape
print_area(circle);
print_area(rect);

}

fn print_area(shape: Shape) {
match shape {
Shape::Circle(radius) = println!("Circle area: {}", 3.14 * radius * radius),
Shape::Rectangle(width, height) = println!("Rectangle area: {}", width * height),

ANDAM.COM, 2025

9 49
AN

Use case: return values for functions representing both present as well absent
(useful) data

/> code/enums-12/src/main.rs

1 fn find_element(arr: &[i32; 5], value: i32) — Option<i32> {
2 for &item in arr.iter() {
3 if item = value {
4 return Some(item);
5
6 }
7 None
8
9
10 fn main() {
11 let numbers = [1, 2, 3, 4, 5];
12
13 match find_element(&numbers, 3) {
14 Some(val) = println!("Found: {}", val),
15 None = println!("Not found"),
}

VANDAM.COM, 2025

© 000U WN -

Use case: return values for functions representing valid return value or error message

> code/enums-13/src/main.rs <>

fn divide(numerator: f64, denominator: f64) — Result<fé4, &'static str> {
if denominator = 0.0 {
Err("Cannot divide by zero!")
} else {
Ok(numerator / denominator)
}
fn main() {

match divide(10.9, 2.8) {
Ok(result) = println!("Result: {}", result),
Err(e) = println!("Error: {}", e),

match divide(10.0, 0.0) {
Ok(result) = println!("Result: {}", result),
Err(e) = println!("Error: {}", e),

VANDAM.COM, 2025

RUST STRUCTS

Structs are like tuples, but in a struct the 'fields’ are named and typed;
m Structs belong to the custom-types.
m Naming convention: PascalCase / UpperCamelCase

<>

// structs-1
fn main() {
struct Rectangle {
width: fé4,
length: fé4

struct Devlang {
name: String,
mascot: String,

OO U A WN -

10 moniker: String,
11 year: ulé

code/structs-1/src/main.rs

<>

LVANDAM.COM, 2025

[

SOOI U R WN =

Structs must be declared and initialized in one step like this:

/> code/structs-2/src/main.rs

// structs-1
fn main() {
struct Rectangle {
width: fé4,
length: f64

let my_rect = Rectangle { width: 2.0, length: 6.0 };
println!("Rectangle perimeter is: {}",my_rect.width*2.6 + my_rect.length*2.0) ;

VANDAM.COM, 2025

© 00O U WN -

In Rust Structs can also be nested in Structs

<> code/structs-3/src/main.rs

fn main() {
struct Coord { x: ul6, y: ulé, z: ulé }
struct Pixel {
c: Coord,
color: String

let ¢l = Coord { x: 1, y: 1, z: 1 };
let my_color = String::from("blue");
let p = Pixel{c: c1, color: my_color};

println!("{}-{}-{} in {} color",p.c.x, p.c.y, p.c.z,p.color) ;

VANDAM.COM, 2025

©00 O U WN -

In Rust we use have so called truple structs. Use cases:
m To Give Meaning to Primitive Types: struct Point(f64,64)
m To differentiate between NewTypes
m To implement traits on Tuples

/> code/structs-5/src/main.rs

struct MyPair(i32, i32);

trait PairSum {
fn pair_sum(&self) — i32;

impl PairSum for MyPair {
fn pair_sum(&self) — i32 {
self.8 + self.1
}

}

fn main() {
let my_pair = MyPair(5, 7);
println!("Sum: {}", my_pair.pair_sum());

e

<>

\

VANDAM.COM, 2025

Jun
OO U WN -

O g S
SO 0WNO LA WN =

22

Unit structs can be used for type-level distinction without holding any data:

> code/structs-6/src/main.rs

struct Guest;
struct User;
struct Admin;

fn can_access_dashhoard(user: &User) — bool {
true

fn can_access_admin_panel(user: &Admin) — bool {
true

fn can_access_public_content(_user: &Guest) — bool {
true

fn main() {
let guest = Guest;
let user = User;
let admin = Admin;

println!(

RUST VECTORS

Vectors in Rust are the resizable variant of Arrays
m Size is unknown
m Vectors can grow and shrink
m Pointer to data
m Length (nr of items)
m Capacity

©PASCALVANDAM.COM, 2025

[

O OO U R WN -

Vectors in Rust can be created in two ways:
m Using the Vec:new() method
m Using the vec! macro

/> code/vectors-1/src/main.rs

// vectors-1

fn main() {
let mut v1: Vec<&str> = Vec::new();
let v2 = vec!["apples", "oranges", "mangos
v1.push("Rust");
v1.push("Go");

println! ("{:2}", v2);

H

<>

.

VANDAM.COM, 2025

Data in vectors in rust can be accessed;
m Array-like using an index
m Using the v.pop() method
m Using the v.get() method
m Using an iterator

©PASCALVANDAM.COM, 2025

OO U WN -

<> code/vectors-2/src/main.rs

// vectors-2

fn main() {
let mut v2 = vec!["apples”, "oranges", "mangos"];

println!("Using index, element 2 = {}",v2[1]);
let popped_fruit = v2.pop() ;
println!("Popped {}",popped_fruit.unwrap());

for (i, f) in v2.iter().enumerate() {
println!("In position {} we have the fruit {}", i, f);

.

ANDAM.COM, 2025

When trying to access out-of-bounds data, Rust will PANIC. To prevent this:
m Use the v.get() method

e |fthere is data, it will return Some(data)
e |f there is no data, it will return None

©PASCALVANDAM.COM, 2025

/> code/vectors-3/src/main.rs

1 // vectors-3 -- with out-of-bounds handling
2
3 fn main() {
4 let v1 = vec!["apples", "oranges", "mangos"];
5
6 for n in 8..=4 {
7
8 match vi1.get(n) {
9 Some(x) = println!("Value at given index {} {}", n,x),
10 None = println!("Sorry, can't do — index {} is out-of-bounds",n)
11
12 }
13 }
\. J

ANDAM.COM, 2025

When we try to pop beyond the last element in the vector, Rust will not PANIC. But,
how to find out there is no data anymore?
m Using the v.pop() method
e |fthere is data, it will return Some(data)
e If the vector is empty, it will return None

m This is a common pattern

code/vectors-4/src/main.rs

// vectors-4 -- Popping till the vector is empty

fn main() {

let mut v1 = vec!["apples", "oranges", "mangos", "kiwis"];
while let Some(value) = v1.pop() {

println!("Popped fruit: {}", value);

©00 O U WN -

VANDAM.COM, 2025

To add elements to a vector:
m Using the v.pop() method

e |f there is data, it will return Some(data)
e |f the vector is empty, it will return None

m This is a common pattern

©PASCALVANDAM.COM, 2025 162

/> code/vectors-5/src/main.rs

1 // vectors-b -- Adding items to a vector
2
3 fn main() {
4 let mut v1 = vec!["apples”, "oranges", "mangos"];
5
6 v1.push("Bananas");
7 v1.push("Ananas");
8 v1.push("Jackfruit");
9
10 for f in vi.iter() {
11 println!("Ttem: {}",f);
12 }
13 }
\. J

ANDAM.COM, 2025

To remove elements from a vector:
m v.pop() removes the last element
m v.remove() removes the element at given index nr

©PASCALVANDAM.COM, 2025

/> code/vectors-6/src/main.rs

1 // vectors-6 -- Removing elements
2
3 fn main() {
4 let mut v1 = vec!["apples”, "oranges", "mangos", "Bananas", "Jackfruit"l;
5 println!("{:7}",v1) ;
6
7 v1.pop(Q);
8 v1.remove(0);
9
10 println!("{:7}",v1) ;
11
12 println!("Vector v1; length = {}, capacity = {}",v1.len(), v1.capacity());
13
14| 3
\, J

ANDAM.COM, 2025

To iterate and mutate elements in a vector:
m User iter.mut() instead of iter()

©PASCALVANDAM.COM, 2025 166

/> code/vectors-7/src/main.rs

OO U R WN -

// vectors-7 -- Iterate & Mutate

fn main() {
let mut v1 = vec!["apples", "oranges", "mangos", "Bananas", "Jackfruit"];

for i in vi.iter_mut() {

*i = "Sold out";

for j in v1.iter() {
printlnt("- {}",3);

let mut v2 = vec![1,2,3,4,5,6,7,8,9,10];
for i in v2.iter_mut() {
*i = *i * *i ;

}
for j in v2.iter() { println!("- {}",i); };

ANDAM.COM, 2025

=

HO OO0 U WN -

We can slice Vectors like we slices Arrays in Rust

<> code/vectors-8/src/main.rs

// vectors-8 -- Slicing vectors

fn main() {
let v1 = vec!["apples", "oranges", "mangos", "bananas", "jackfruit"];

let slicel = &v1[3..];

for i in slicel.iter() {
println!("{}",i);

<>

\

VANDAM.COM, 2025

RUST HASHMAPS

HashMaps in Rust;
m Store values by key
m Keys can be booleans, integers, strings
m Needs Eq and Hash traits
m Are growable and shrinkable

©PASCALVANDAM.COM, 2025

<> code/hashmaps-1/src/main.rs

1 use std::collections::HashMap;
2
3 fn main() {
4 let mut pet_owners = HashMap::new();
5 pet_owners.insert("Pascal”, "Tarja");
6 pet_owners.insert("Jarmo", "Nibbit");
7 pet_owners.insert("Sill", "Bowser");
8
9 for (k, v) in &pet_owners {
10 println!(" {} {}", k, v);
11 }
12
13 let res = pet_owners.insert("Jarmo", "Apoe");
14 if res.is_some() {
15 println!("Replacing {} with Apoe...", res.unwrap());
16 }
. J

LVANDAM.COM, 2025

o

QOO U WN =

Data in HashMaps in Rust can be accessed;
m Using the m.get() method
m Using an iterator

<S> code/hashmaps-2/src/main.rs

use std::collections::HashMap;

fn main() {
let mut pet_owners = HashMap::new();
pet_owners.insert("Pascal”, "Tarja");
pet_owners.insert("Jarmo", "Nibbit");
pet_owners.insert("Sill", "Bowser");
// pet_owners.insert("Kjell", "Tingelfantje");

let res = pet_owners.get("Sill");

<>

\

VANDAM.COM, 2025

o

O VWO U A WN -

Removing data by key from HashMaps

<S> code/hashmaps-3/src/main.rs

use std::collections::HashMap;

fn main() {
let mut pet_owners = HashMap::new();
pet_owners.insert("Pascal", "Tarja");
pet_owners.insert("Jarmo","Nibbit");

if let Some(v) = pet_owners.remove("Jarmo") {
println!("Removed Jarmo from hashmap, who owned {}",v);

} else {

\

VANDAM.COM, 2025

RUST UNIONS

We simply keep away from these in this course, unsafe rust is needed here. In other
words.... beyond here are Dragons..

m Enum like type
m Storage sized for the biggest type
m Storage is reused/overwritten

©PASCALVANDAM.COM, 2025

RUST FUNCTIONS

Functions in Rust
m Can return one or multiple return values
m Pass arguments by value or by reference
m Naming convention is: snake_case

©PASCALVANDAM.COM, 2025

o

OO WD U WN =

Function which passes argument by value

<> code/functions-1/src/main.rs

fn print_square(side: £32) {
println!("The square of {} is {}", side, side * side);

fn print_str(a: &tring) {
println!("String is: {}", a);

fn main() {

let s = 12.0;

\

VANDAM.COM, 2025

[

OO0 ND U WN -

Function which passes argument by reference

<P

fn scale(side: & mut 32, factor: 32) {
*side *= factor;

fn main() {
let factor = 2.5;
let mut side: 32 = 12.0;

print!("Scaling {} ",side);

scale(& mut side,factor);

code/functions-2/src/main.rs

VANDAM.COM, 2025

Returning a single value

<> code/functions-3/src/main.rs

1 fn divide(a: £32, b: f32) — 32 {
2 a/b
3
4
5 fn main() {
6 let a: f32 = 8.6 ;
7 let b: f32 = 2.6 ;
8 println!("{} divided by {} gives {}",a,b,divide(a,b));
9
10 }

. J

VANDAM.COM, 2025

© 00U WN =

Returning multiple values

}

// Returns the real solutions for the quadratic equation defined by aX2+bX+c

//
fn solve(a: 64, b: f64, c: f64) — (f64, f64) {

fn main() {

<S> code/functions-5/src/main.rs

let discriminant = b * b - 4.6 * a * c;

if discriminant < 0.6 {
println!("Does not have any real solutions");
return (0.0, 0.0);

b

let d = discriminant.sqrt();

let solutionl = (-b + d) / (2.0 * a);

let solution2 = (-b - d) / (2.8 * a);

(solution?, solution2)

let (soll, sol2) = solve(1.8, 3.8, 2.8);
println!("soll = {}, sol2 = {}", soll, s0l2);

VANDAM.COM, 2025

o0 U B WN -

In Rust the concept of null or nil is not part of the language. Also failure is not an
Option, it's a Result:

> code/functions-4/src/main.rs <S>

fn divide_deluxe(a: 32, b: £32) — Result<f32,String> {
if b =10.0 {
Err("!! Division by zero".to_string())
} else {
Ok(a/b)
}
fn main() {
let a: f32 = 8.0;
let b: f32 = 2.0;
let res = divide_deluxe(a,b);
match res {
Ok(v) = { println!("{}",v); }
Err(msg) = { println!("Error: {}",msg) ; }
) 9 9
\. o J

VANDAM.COM, 2025

RUST METHODS

Rust doesn’t have classes, in Rust methods are based upon it's struct data types.
m Methods are functions enclosed in an impl code block

This impl codeblock is referencing the struct the method(s) belong too

A self parameter refers to the struct the methods belong too.

Methods that consult the struct

Methods that change the struct

Static methods

Needed for traits later

Naming convention: snake_case

©PASCALVANDAM.COM, 2025 184

Method that only reads the underlying struct

/> code/methods-1/src/main.rs

use std::f64::consts::PI;
struct Circle { radius: fé4 }

impl Circle {
fn perimeter(&self) — f64 {
self.radius*2.6*PI
}

}

fn main() {
let ¢ = Circle{radius: 2.0};
println!("Perimeter of circle with radius {} is {}",c.radius,c.perimeter());

.

VANDAM.COM, 2025

Method that changes the underlying struct

<> code/methods-2/src/main.rs

use std::f64::consts::PI;
struct Circle { radius: fé4 }

impl Circle {
fn perimeter(&self) — f64 {
self.radius*2.0*PI

}
fn scale(&mut self, factor: f64) { self.radius *= factor; }

fn main() {
let mut ¢ = Circle{radius: 2.0};
c.scale(2.0);
println!("Perimeter of circle with radius {} is {}",c.radius,c.perimeter());

ANDAM.COM, 2025

© 00D UE WN -

Static method

f

<>

use std::f64::consts::PI;
struct Circle {
radius: 64,

impl Circle {
fn new(r: f64) — Circle {
Circle { radius: r }

fn perimeter(&self) — f64 {
self.radius * 2.6 * PI
}
}

fn main() {

code/methods-3/src/main.rs

\

ANDAM.COM, 2025

RUST TRAITS

Rust does not do class inheritance, but uses composition instead.
m Inheritance is about'is’; the horse is an animal.
m Composition is about "'has’; the horse has 4 legs.
m Composition is implemented using nested structs
m Generics/polymorphism is implemented using traits

©PASCALVANDAM.COM, 2025 189

A sphere is a mathematical body. It is defined by a radius and has a volume and an
area. A Cube is also a mathematical body. Traits define the common interface
between different type of objects. So let’s define the methods that are required for a
Body. This bill of requirements (the interface) is called a trait in Rust.

code/traits-1/src/main.rs

9| struct Pyramid {

10 side: f64,

11 height: fé4,
}

©PASCALVANDAM.COM, 2025

13

15
16
17
18
19
20
21
22
23
24

Now we have defined the interface, it's now time to write the individual methods on
the structs. These methods 'implement’ the methods as required by the Trait '‘Body’.

<>

<> code/traits-1/src/main.rs

trait Solid {
fn volume(&self) — fé64;

impl Pyramid {
fn volume(&self) — fé4 {
((self.side * self.side) * self.height) / 4.0

}
impl Sphere {

VANDAM.COM, 2025

The goal is now to write a function that is able to handle both Sphere and Cube
projects and in the future probably other objects that satisfy the ‘Body’ trait. We
are using Generics for this:

code/traits-1/src/main.rs

fn volume(&self) — fé4 {
(self.radius * self.radius * self.radius) * PI * (4.6 [/ 3.8)
}

}
impl Cube {
fn volume(&self) — f64 {

LVANDAM.COM, 2025

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

Last part is calling the generic function on structs/objects that satisfy the Body

interface:

/> code/traits-1/src/main.rs

self.side * self.side * self.side

}

// Generic function for Structs implementing the Body trait

fn volume(Solid: B) — f64 {
B.volume()

fn main() {
let s = Sphere { radius: 10.8 };
printlnt(
"Volume of Sphere with radius {} is {}",
s.radius,

<>

VANDAM.COM, 2025

RUST AND OOP

The four major principles of OOP
m Encapsulation
m Inheritance
m Polymorphism
m Abstraction

©PASCALVANDAM.COM, 2025

m Use structs to create custom data types classes
m Use pub keyword to make fields public
m Methods can be associated with struct using impl

<S> code/oop-1/src/main.rs <>

struct Person {
pub name: String,
age: u8,

impl Person {
pub fn new(name: String, age: u8) — Self {
Person { name, age }

© 00U WN =

11 pub fn say_hello(&self) {
12 println!(
\

~O

VANDAM.COM, 2025

m Rust doesn’t support inheritance like in traditional OOP languages
m Rust favours composition over inheritance

m In Rust you can use embedded structs for composition

m Trait based generics enable polymorphism and code re-use

m Rust supports trait inheritance

©PASCALVANDAM.COM, 2025

m Polymorphism is achieved by using Rust’s trait system
m Define a trait
m Implement that trait for various types

©PASCALVANDAM.COM, 2025 198

m Using structs, enums and traits only to expose relevant data
m Using pub and the module system to hide implementation details

©PASCALVANDAM.COM, 2025

®m Implementation on trait level
m Can be overridden by specific types

©PASCALVANDAM.COM, 2025

© 00U WN

m Operator overloading use specific traits like
* Add
® Sub
° Mul
® Div
m Covered by: std::ops

> code/oop-5/src/main.rs

// Overloading the * operator for scalar multiplication
impl<'a> Mul<fé4> for &'a Matrix {
type Output = Matrix;

fn mul(self, scalar: f64) — Matrix {
let result = self
.data
Liter()
.map(|row| row.iter().map(|val| val * scalar).collect::<Vec<f64>())
.collect::<Vec<Vec<fb64>>>();

Matrix::new(result)

VANDAM.COM, 2025

9 49
AN

<>

RUST LIFETIMES

Rust lifetimes are a need extension to Ownership and Borrowing. They help the Rust
compiler to ensure memory safety. We need lifetime annotations when the
compiler can’t decide on it's own the lifetime of variables and would risk access to

invalidated data

©PASCALVANDAM.COM, 2025

© O] U s WN -

In the following case the Rust compiler has all the needed info and can derive the
lifetimes of the variables from the program code itself. No annotations needed.

> code/lifetimes-1/src/main.rs <>

struct Circle { radius: fé4 }

fn main() {
let c1: Circle;

{
let c2 = Circle{ radius: 5.0};
// c2 dropped out of scope, so won't compile
cl = &c2;
\. v © ¥ W -/

Does not compile. e

~O

LVANDAM.COM, 2025

© 00U WN -

In the following case the Rust compiler can’t decide on the lifetimes and needs hints
from us. Hence lifetime annotations will be needed. This Rust program will refuse

to compile

<>

<S> code/lifetimes-2/src/main.rs

struct Circle { radius: f64, color: String }

fn largest_circle(c1: &Circle, c2: &Circle)—>&Circle{
if cl.radius > c2.radius {
cl
}
else {
c2

}

fn main(){
let ¢1 = Circle{ radius: 2.8, color: "yellow".to_string() };
let c2 = Circle { radius: 1.8, color: "red".to_string() };

let c3 = largest_circle(&c1, &c2); ‘ 0

println!("Largest is the {} circle",c3.color);

VANDAM.COM, 2025

[

O VWO U W

code/lifetimes-3/src/main.rs

fn largest_circle<'a>(c1: &'a Circle, c2: &'a Circle)—>&'a Circle{
if c1.radius > c2.radius {
cl
}

else {
c2
}

}

m The function has 2 reference arguments and returns one of them

m It is unknown at compile time which one will be returned

m Normally both references get individual lifetimes assigned

m Here, they need to have the same lifetime assigned

m And so needs the return reference value Q
—~

VANDAM.COM, 2025

We need to assign the same lifetime for both arguments AND the return value:

<> code/lifetimes-3/src/main.rs <S>

1| struct Circle { radius: f64, color: String }
2
3 fn largest_circle<'a>(c1: &'a Circle, c2: &'a Circle)—>&'a Circle{
4 if cl1.radius > c2.radius {
5 cl
6 }
7 else {
8 c2
9
10/ }
11
12 fn main(){
13 let c¢1 = Circle{ radius: 2.8, color: "yellow".to_string() };
14 let c2 = Circle { radius: 1.8, color: "red".to_string() };
15 let c3 = largest_circle(&c1, &c2);
16 println!("Largest is the {} circle",c3.color);
}

VANDAM.COM, 2025

Lifetime annotations:
m do not change the lifetime of references!
m specify the relation of lifetimes between references
m are never needed for owned variables
®m naming convention is ' followed by a single lowercase character <'a>
m can also be needed in structs containing references

©PASCALVANDAM.COM, 2025 208

Lifetime elision is the process in which the Rust compilers tries to determine the
lifetimes of variables automatically.

m If lifetime elision is possible, no lifetime annotations are required
m If lifetime elision is not possible, we need to annotate these variables
m There are three cases/rules where lifetime elision is possible

©PASCALVANDAM.COM, 2025

m Each elided lifetime in input position becomes a distinct lifetime parameter
m If there is exactly one input lifetime position (elided or not), that lifetime is
assigned to all elided output lifetimes
m If there are multiple input lifetime positions, but one of them is &self or
&mut self, the lifetime of self is assigned to all elided output lifetimes.
m Otherwise, it is an error to elide an output lifetime
In the latter case we need to help the Rust compile by providing lifetime annotations.

©PASCALVANDAM.COM, 2025

Each elided lifetime in input position becomes a distinct lifetime parameter

<S> code/lifetimes-6/src/main.rs

1 // Each elided lifetime in input position becomes a distinct lifetime parameter.
2 struct Circle { radius: fé4, color: String }
3
4 fn largest_circle<'a, 'b>(c1: &'a Circle, c2: &'b Circle)—>& Circle{
5 if cl.radius > c2.radius {
6 cl
7 }
8 else {
9 c2
10 }
11 }
12
13 fn main(){
14 let ¢1 = Circle{ radius: 2.8, color: "yellow".to_string() };
15 let c2 = Circle { radius: 1.8, color: "red".to_string() };
16 let c3 = largest_circle(&c1, &c2);
17 println!("Largest is the {} circle",c3.color);
}

ANDAM.COM, 2025

If there is exactly one input lifetime position (elided or not), that lifetime is assigned
to all elided output lifetimes

<> code/lifetimes-5/src/main.rs <S>

1 // If there is exactly one input lifetime position (elided or not),
2 // that lifetime is assigned to all elided output lifetimes.

3| fn last_word (s: &str) — &str {

4 let b = s.as_bytes();

5 for (n,&) in b.iter().rev().enumerate() {

6 ifc=0b""'{

7 return &s[s.len()-n..];

8

9 }

10 s

11 }

12
13 fn main() {

14 let my_sentence = "Famous last words";

15 println!("Last word in '{}' is '{}'",my_sentence,last_word(my_sentence));
16

.

) CA
A~

VANDAM.COM, 2025

© OO U WN =

If there is exactly one input lifetime position (elided or not), that lifetime is assigned

to all elided output lifetimes

> code/lifetimes-4/src/main.rs <>

fn last_item (s: &str, ch: char) — &str {
let b = s.as_bytes();
for (n,&) in b.iter().rev().enumerate() {
if ¢ as char = ch {
return &s[s.len()-n..];

}

S

}

fn main() {
let my_sentence = "apples,oranges,bananas and ananas'";
println!("Last item in '{}' is '{}'",my_sentence,last_item(my_sentence,",'));

VANDAM.COM, 2025

If there are multiple input lifetime positions, but one of them is &self or &mut self,
the lifetime of self is assigned to all elided output lifetimes.

<> code/lifetimes-7/src/main.rs

1 // If there are multiple input lifetime positions, but one of them is &self or &mut self
2 // the lifetime of self is assigned to all elided output lifetimes.
3| struct Circle { radius: fé4, color: String }
4
5 impl Circle {
6 fn colorize (&self, color: &str) — &str {
7 &self.color
8 }
9
10 }
11
12 fn main(){
13 let ¢1 = Circle{ radius: 2.8, color: "blank'.to_string() };
14 println!("{}",c1.colorize("red"));
}

VANDAM.COM, 2025

© 000U WN -

If the compiler can’t make a decission, we need to provide lifetime annotations

<> code/lifetimes-3/src/main.rs <S>

struct Circle { radius: f64, color: String }

fn largest_circle<'a>(c1: &'a Circle, c2: &'a Circle)—>&'a Circle{
if cl1.radius > c2.radius {
cl
}
else {
c2

}

}

fn main(){
let c¢1 = Circle{ radius: 2.8, color: "yellow".to_string() };
let c2 = Circle { radius: 1.8, color: "red".to_string() };

let c3 = largest_circle(&c1, &c2);
println!("Largest is the {} circle",c3.color);

VANDAM.COM, 2025

RUST ERROR HANDLING

Error types:
m Non-recoverable errors
m Recoverable errors

©PASCALVANDAM.COM, 2025

Errors that cannot be recovered from:
m Out-of-bounds access
m Integer division by zero
m Assertion failure
m Calling .expect or [.unwraplon anerr
Please note that panics happen on a per thread basis.

code/error-handling-1/src/main.rs

use std::fs;

fn main() {
let content = fs::read_to_string("./Cargo.tonl").unwrap();
println!("Contents:\n{}", content);

let _content2 = fs::read_to_string("./Cargo.tonl").expect("Can't read Cargo.tonl");
println!("{}", content);

© 000U WN -

b5

VANDAM.COM, 2025

The panic! macro is there when you want to panic out of a situation in your program:

code/error-handling-2/src/main.rs

fn main() {
let world_needs_reboot: bool = true;

if world_needs_reboot {
panic!("Unable to comply, world needs rebooting...");

O U WN =

VANDAM.COM, 2025

Result Enums are the Rust way to communicate on errors
m Compare them with the Option enum

m Result Enum contains:

e OK(v) if all went ok
® Err(e) in case of unwanted error

code/error-handling-7/src/main.rs

fn halves_if_even(i: i32) — Result<i32, String> {
ifi%2=0{
k@ / 2)
} else {

Err("That's odd".to_string())

O U WN -

LVANDAM.COM, 2025

© 3O WN -

In Rust ErrorKind can be tested for the kind of error

<S> code/error-handling-8/src/main.rs

use std::fs::File;
use std::io::ErrorKind;

fn main() {
let myfile = "tst.txt";
let f = File::open(myfile);

let f = match f {
Ok(file) = file,
Err(error) = match error.kind() {
ErrorKind::NotFound = match File::create(myfile) {
Ok(fc) = fc,
Err (e) = panic!("Unable to create file: {:7}",e),

)
other_error = {
panic!("Unable to open file: {:?}",other_error)

ANDAM.COM, 2025

The unwrap_or_else() method invokes a closure to handle the error.

<S> code/error-handling-9/src/main.rs

1 use std::fs::File;
2 use std::io::ErrorKind;
3
4| fn main() {
5
6 let myfile = "tst.txt";
7 let f = File::open(myfile).unwrap_or_else(|error| {
8 if error.kind() = ErrorKind::NotFound {
9 File::create(myfile).unwrap_or_else(|error| {
10 panic!("Issue creating the file {}: {}",myfile,error);
11
12 } else {
13 panic!("Problem opening the file {}: {}",myfile,error);
14 }
15 b;
16 1}

L J

VANDAM.COM, 2025

One can use match to test for the results
m Ok(v)
m Err(e)

<S> code/error-handling-10/src/main.rs <>

use std::fs::File;

fn main() {
let myfile = "myfile2.txt";

let f = File::open(myfile);
let f = match f {

Ok(file) = file,
10 Err(e) = panic!("Issue opening file {}: {}",myfile,e),

© 000U WN -

VANDAM.COM, 2025

The unwrap method simply:
m Returns the Result value wrapped in Ok if no error occured
m Panics if the Result was an error

code/error-handling-11/src/main.rs

use std::fs::File;

fn main() {
let myfile = "myfile2.txt";

let f = File::open(myfile).unwrap();

WO UL W

LVANDAM.COM, 2025

The expect method provides an extra option to supply an accompanying message to
explain the error from the program’s perspective:

code/error-handling-12/src/main.rs

use std::fs::File;

fn main() {
let myfile = "myfile2.txt";

let f = File::open(myfile).expect("Unable to open file");

0O Utk W=

VANDAM.COM, 2025

Example using multiple let match expressions to handle the error(s)

<S> code/error-handling-13/src/main.rs

1 use std::fs::File;
2 use std::io;
3 use std::io::Read;
4
5 fn read_name_from_file() — Result<String, io::Error> {
6 let f = File::open("myfile3.txt");
7
8 let mut f = match f §
9 Ok(file) = file,
10 Err(e) = return Err(e),
11 IH
12
13 let mut s = String::new();
14
15 match f.read_to_string(&mut s) {
16 0k(Z) = 0k(s),
17 Err(e) = Err(e),
}

VANDAM.COM, 2025

code/error-handling-13/src/main.rs

24 if s.is_err() {

25 panic!("We ran into an error reading name from file");
26 } else {

27 println!("We read the following name: {}",s.unwrap());
28 }

29 }

VANDAM.COM, 2025

The ? operator:
m Returns directly with Err(e) if it's an error case
m Unwraps and continues if there’s no error
m Idiomatic Rust for error propagation

> code/error-handling-14/src/main.rs <>

use std::fs::File;
use std::io;
use std::io::Read;

fn read_name_from_file() — Result<String, io::Error> {
let mut f = File::open("myfile3.txt")?;
let mut s = String::new();

© 00O U WN -

match f.read_to_string(&mut s) {
10 0k(_) = 0k(s),
11 Err(e) = Err(e),

}

VANDAM.COM, 2025

<S> code/error-handling-15/src/main.rs

1 use std::fs::File;
2 use std::io;
3 use std::io::Read;
4
5 fn read_name_from_file() — Result<String, io::Error> {
6 let mut f = File::open("myfile3.txt")?;
7 let mut s = String::new();
8 f.read_to_string(& mut s)?;
9 Ok(s)
10
11
12| fn main() {
13 let s = read_name_from_file();
14
15 if s.is_err() {
16 panic!("We ran into an error reading name from file");
17 } else {
18 println!("We read the following name: {}",s.unwrap());
}

ANDAM.COM, 2025

<S> code/error-handling-15/src/main.rs

1 use std::fs::File;
2 use std::io;
3 use std::io::Read;
4
5 fn read_name_from_file() — Result<String, io::Error> {
6 let mut f = File::open("myfile3.txt")?;
7 let mut s = String::new();
8 f.read_to_string(& mut s)?;
9 Ok(s)
10
11
12| fn main() {
13 let s = read_name_from_file();
14
15 if s.is_err() {
16 panic!("We ran into an error reading name from file");
17 } else {
18 println!("We read the following name: {}",s.unwrap());
}

ANDAM.COM, 2025

Chaining can provide even more simplification:

<S> code/error-handling-16/src/main.rs

1 use std::fs::File;

2 use std::io;

3 use std::io::Read;

4

5 fn read_name_from_file() — Result<String, io::Error> {

6 let mut s = String::new();

7 File::open("myfile3.txt")?.read_to_string(& mut s)?;

8 Ok(s)

9

10

11 fn main() {

12 let s = read_name_from_file();

13 if s.is_err() {

14 panic!("We ran into an error reading name from file");
15 } else {

16 println!("We read the following name: {}",s.unwrap());

ANDAM.COM, 2025

RUST CLOSURES

Closures in Rust are:
m closes over it's environment
®m anonymous function
m Used a lot in other functions, iterators and concurrency

©PASCALVANDAM.COM, 2025

Closures:
m If the body consists of a single expression, no {} needed
® Return types are not mandatory
m Data types are not mandatory
m Can capture the environment. Each used external variable is borrowed

©PASCALVANDAM.COM, 2025

Trying to sort an array. Using ascending order works out-of-the-box:

code/closures-2/src/main.rs

1 fn main() {

2 let mut a = [21, 4, 28, 45, 99, 5, 91;
3

4 println!("{:7}", a);

5 a.sort();

6 println!("{:?}", a);

7

VANDAM.COM, 2025

© 00O U W=

We can use the alternative sort_by() method that uses a function:

/> code/closures-3/src/main.rs

use std::cmp::0rdering;

fn descending(a: &i32, b: &i32) — Ordering {
if a < b { Ordering::Greater }
else { Ordering::Less }

fn main() {
let mut a = [21, 4, 28, 45, 99, 5, 91;

println!("{:?}", a);
a.sort_by(descending);
println!("{:7}", a);

VANDAM.COM, 2025

Using closures is more elegant:

<> code/closures-5/src/main.rs
1 use std::cmp::0rdering;
2
3 fn main() {
4 let mut a = [21, 4, 28, 45, 99, 5, 91;
5
6 println!("{:7}", a);
7 a.sort_by(la, bl {
8 ifa<b {
9 Ordering::Greater
10 } else if a>b {
11 Ordering::Less
12 } else {
13 Ordering::Equal
14
15 i
16 println!("{:?2}", a);

VANDAM.COM, 2025

Even more elegant:

code/closures-6/src/main.rs

fn main() {
let mut a = [21, 4, 28, 45, 99, 5, 91;

println!("{:7}", a);
a.sort_by(la, b| b.cmp(a));
println!("{:7}", a);

OO WN =

VANDAM.COM, 2025

Functions cannot use let variables of the outside blocks:

code/closures-4/src/main.rs

fn main() {
let five: f64 = 5.0;
fn print_fé4(x: f64) {
print!("{}", x * five);

print_f64(3.1);

WO Ul WN -

VANDAM.COM, 2025

There are several ways closures can be invoked:

<S> code/closures-7/src/main.rs
1 fn main() {
2 let factor = 2;
3 let mul = |al] a * factor;
4 print!("{}", mul(4));
5 let mul_ref = &mul;
6
7 println!(
8 BRI R R AN
9 (*mul_ref)(4),
10 mul_ref(4),
11 (lal a * factor)(4),
12 (la: i32] a * factor)(4),
13 lal - i32 { a * factor }(4)
14);
15 }
\. J

VANDAM.COM, 2025

Type inference on closures only happens once:

code/closures-9/src/main.rs

fn main() {
let closure = |num| num;

let var_1 = closure(5);
println!("{}", var_1);

let var_2 = closure(2.5);
println!("{}", var_2);

© 00O U R WN -

VANDAM.COM, 2025

© 00T U W=

Moving closures take ownership of used ext variables

<> code/closures-8/src/main.rs

struct Circle {
radius: fé64,
txt: String,

}

fn main() {
let circle = Circle {
radius: 1.6,
txt: "test".to_string(),

3
// Closure:
let closure = || {
println!("radius: {:?}", circle.radius);

H
closure();
println!("radius: {:?}", circle.radius);

let circle = Circle {
radius: 1.6,
txt: "test".to_string(),

H

99

.

ANDAM.COM, 2025

RUST GENERICS

©00 O U WN =

The problem we want to solve:

</> code/generics-3/src/main.rs

fn get_smallest(numbers: Vec<i32>) — i32 {

let mut smallest = numbers[0];
for n in numbers {
if n < smallest {
smallest = n;

smallest

fn get_smallest_f64(numbers: Vec<fé4>) — f64 {
let mut smallest = numbers[6];
for n in numbers {

if n < smallest {
smallest = n;

smallest

fn main() {
let a = vec![4,52,1,2,3,8,-8,22,42,81];

© 000U WN =

With generics:

<> code/generics-4/src/main.rs

fn get_smallest<T>(numbers: Vec<T>) — T {

let mut smallest = numbers[0];
for n in numbers {
if n < smallest {
smallest = n;

smallest

fn main() {
let a = vec![4,52,1,2,3,8,-8,22,42,81];
let b = vec![3.1,-2.3,2.8,37.3,21.1];
println!("{}",get_smallest(a));
println!("{}",get_smallest(b));

ANDAM.COM, 2025

We try to cover to many types, we need to set bounds

<> code/generics-5/src/main.rs

1 fn get_smallest<T>(numbers: Vec<T>) — T

2 where

3 T: PartialOrd + Copy,

4| {

5 let mut smallest = numbers[0];

6 for n in numbers {

7 if n < smallest {

8 smallest = n;

9

10

11 smallest

12 }

13

14 fn main() {

15 let a = vec![4, 52, 1, 2, 3, 8, -8, 22, 42, 811;
16 let b = vec![3.1, -2.3, 2.8, 37.3, 21.11;
17 println!("{}", get_smallest(a));

18 println!("{}", get_smallest(b));

VANDAM.COM, 2025

Generics can also be applied to Structs

code/generics-6/src/main.rs

struct Pixel<T,U>{ x: T, y: U}

fn main() {
let p1 = Pixel{x: 1,y: 2};
let p2 = Pixel{x: 08.5,y: 108.5};
let p3 = Pixel{x: 0.5,y: 108};
}

O U R W N =

VANDAM.COM, 2025

And enums:

code/generics-7/testing/test1.rs

struct Pixel<T,U>{ x: T, y: U}

fn main() {
let p1 = Pixel{x: 1,y: 2};
let p2 = Pixel{x: 08.5,y: 108.5};
let p3 = Pixel{x: 0.5,y: 108};
}

O U R W N =

VANDAM.COM, 2025

Combination of Generic and specific impl

code/generics-8/testing/test1.rs

struct Pixel<T,U>{ x: T, y: U}

fn main() {
let p1 = Pixel{x: 1,y: 2};
let p2 = Pixel{x: 08.5,y: 108.5};
let p3 = Pixel{x: 0.5,y: 108};
}

O U R W N =

VANDAM.COM, 2025

RUST DYNAMIC DISPATCH OR TRAIT OBJECTS

19
20
21

23
24
25
26
27
28

The problem we want to solve:

<> code/dynamic-1/src/main.rs

fn main() {
let mut animals: Vec<Box<dyn Speak> = Vec::new();

animals.push(Box::new(Dog));
animals.push(Box::new(Cat));

for animal in animals.iter() {
animal.speak();

VANDAM.COM, 2025

With Rust Trait Objects / Dynamic Dispatch:

<> code/dynamic-1/src/main.rs

1 trait Speak {

2 fn speak(&self);
3

4

5 struct Dog;

6 impl Speak for Dog {
7 fn speak (&self) {
8 println!("Woof!");
9

10 }

11

12 struct Cat;

13 impl Speak for Cat {

14 fn speak (&self) {

15 println!("Meow!");
}

VANDAM.COM, 2025

19
20
21

23
24
25
26
27
28

With Rust Trait Objects / Dynamic Dispatch:

<> code/dynamic-1/src/main.rs

fn main() {
let mut animals: Vec<Box<dyn Speak> = Vec::new();

animals.push(Box::new(Dog));
animals.push(Box::new(Cat));

for animal in animals.iter() {
animal.speak();

VANDAM.COM, 2025

m Performance Implications - runtime
m Object Safety

m Lifetime Specifiers

m Downcasting - reflection

©PASCALVANDAM.COM, 2025

m Enums
m Generics and Static Dispatch

©PASCALVANDAM.COM, 2025

RUST ITERATORS

Iterator types:
m Adapters -> iterator in -> iterator out
m Consumers -> iterator in -> other type out

©PASCALVANDAM.COM, 2025

Jun

OO0 U R WN =

<>

fn main() {
let v1 = vec![1,2,3,5,7,11,13,17,19];

let vi_iter = vi.iter();

for i in vi_iter {
println!("{}",i);

code/iterators-1/src/main.rs

<>

VANDAM.COM, 2025

Use iter_mut() for a mutable iterator
m Mind the mut on the vector

<> code/iterators-2/src/main.rs <S>

1 fn main() {
2 let mut v1 = vec![1,2,3,5,7,11,13,17,191;
3
4 let vi_iter = vi.iter_mut();
5
6 for i in vi_iter {
7 *i +=1
8 }
9
10 let vi_iter2 = vi.iter();
11 for i in vi_iter2 {
12 println!("{}",1);

}

VANDAM.COM, 2025

code/iterators-3/src/main.rs

fn main() {
let v1 = vec![1,2,3,5,7,11,13,17,19];
let vi_iter = vi.iter();
let sum: i64 = vi.iter().sum();

println!("Sum is: {}",sum);

0O U WN

VANDAM.COM, 2025

The iterator adapter map applies changes to the set

code/iterators-4/src/main.rs

fn main() {
let v1 = vec![1,2,3,5,7,11,13,17,19];
let vi_iter = vi.iter();

vi.iter().map(Ix| x*2);
for n in vi.iter() {
println!("{}",n);

© 00D O WN =

VANDAM.COM, 2025

[

O OO U WN =

The iterator adapter map applies changes to the set

/> code/iterators-5/src/main.rs

use std::any::type_name;
fn print_type_of<T>(_: &T) {
println!("{}", std::any::type_name::<T>())

fn main() {
let v1 = vec![1,2,3,5,7,11,13,17,19];

let v2: Vec< > = v1.iter().map(|x| x*2).collect();

VANDAM.COM, 2025

The iterator adapter filter selects elements from the set
m Mind the use of the double dereference in the selection part

code/iterators-6/src/main.rs

fn main() {
let v1 = vec![1,2,3,-4,5,7,-8,11,-1,13,17,191;

let mut v2_iter = vi.iter().filter(|x] **x < 8);

while let Some(v) = v2_iter.next() {
println!("{}",v);

OO0 U WN -

VANDAM.COM, 2025

[un
O VOO U WN =

11
12

The zip adapter combines the elements in two sets into a tuple

> code/iterators-7/src/main.rs

fn main() {
let emp_no = vec![1, 2, 3];
let age = vec![20, 38, 35];

let iter_emp = emp_no.iter();
let iter_age = age.iter();

let zip_iter = iter_emp.zip(iter_age);

for item in zip_iter{
println!("({}, {})", item.0,item.1);

.

VANDAM.COM, 2025

[

O VWO U WN =

Step 1: define the structs and the constructor methods

<P

struct Counter {
count: ub4,

impl Counter {
fn new() — Counter {
Counter { count: 0 }

code/iterators-8/src/main.rs

VANDAM.COM, 2025

11
12
13
14
15
16
17
18
19
20
21
22
23

Step 2: implement the next() method

<> code/iterators-8/src/main.rs

impl Iterator for Counter {
type Item = ub4;

fn next(&mut self) — Option<Self::Item> {
if self.count < 9 {

self.count += 1;
Some(self.count)
} else {
None
}

}
}

f

\

VANDAM.COM, 2025

Step 3: Testing/using the iterator in main()

code/iterators-8/src/main.rs

24 fn main() {

25 let mut ¢ = Counter::new();
26 while let Some(v) = c.next() {
27 println!("{}", v);

28 }

29 }

VANDAM.COM, 2025

RUST TESTING

Rust provides means to do:
m Unit testing
m Integration testing

©PASCALVANDAM.COM, 2025 269

©0ooTO U WN -

Unit testing in Rust:

<

code/testing-1/src/main.rs

pub fn mul(a: i32, b: i32) — i32 {
a*h
#cfg(test)]
mod tests {
use super::*;
#[test]
fn test_mul() {
assert_eq! (mul(5, 2), 10);
}
\. J

VANDAM.COM, 2025

Unit testing is executed with cargo test
m Run tests in sequence or concurrent (default)
m Run only a subset of tests

©PASCALVANDAM.COM, 2025

11
12
13
14
15
16
17
18
19
20
21
22
23

Rust does not have a standard way to do table driven testing, but we can implement
it like this:

> code/testing-3/src/main.rs <>

#[cfg(test)]

mod tests {
use super::¥;

#test]
fn test_fac() {
let tbl: &[(i64, i64)]1 = &[(0, 1), (1, 1), (2, 2), (3, 6), (4, 24)];

for (n, expected) in tbl {
assert_eq! (fac(*n), *expected);

VANDAM.COM, 2025

Integration testing is implemented by placing test code in the tests directory in the
root of the package:

code/testing-4/tests/integration1.rs

use testing_4::add;
#[test]
fn test_add() {
assert_eq! (add(3, 2), 5);

TU W N =

©PASCALVANDAM.COM, 2025

RUST BENCHMARKING

Rust provides means to benchmark code:
m Rust native (not stable, nightlies)
m Criterion package

©PASCALVANDAM.COM, 2025

Benchmarking with Criterion in rust:
m External crate
m Derived from Haskell criterion tool
m Creates useful reports

©PASCALVANDAM.COM, 2025 276

To setup Criterion for benchmarking we need to:
m Configure Cargo. toml
m Import the Criterion crate
m Create a benches directory with Benchmark tests

©PASCALVANDAM.COM, 2025

We need to configure Cargo.toml for Criterion:
m Add the criterion package
m Configure criterion package (html-reports)
m Disable internal benchmarking (harnass)
m Name our bechmarking set

©PASCALVANDAM.COM, 2025 278

© O] U R WN -

The Cargo.toml file for benchmarking with Criterion

<S> code/simple-bench/Cargo.toml

[package]

name = "simple-bench"
version = "6.7.6"
edition = "2621"

See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
[dependencies]

[dev-dependencies]
criterion = { version="0.4.8", features=["html_reports"] }

[[bench]]
name = "simple-bench"
harness = false

ANDAM.COM, 2025

© 000U WN =

The example code to benchmark:

<

pub fn minus_one(number: i32) — i32 {
number - 1

#[cfg(test)]
mod tests {
use super::¥;
#test]
fn test_minus_one() {
assert_eq! (minus_one(1), 0);

code/simple-bench/src/lib.rs

<>

VANDAM.COM, 2025

© 00O Uk W -

The Benchmark code is written in rust files in the benches directory in the crate’s root:

<S> code/simple-bench/benches/simple-bench.rs <>

use simple_bench::minus_one;

use criterion::BenchmarkId;

use criterion::Criterion;

use criterion::{criterion_group, criterion_main};

fn minus_one_benchmark(c: &mut Criterion) {
let size: usize = 1024;

c.bench_with_input(BenchmarkId::new("Simple bench", size), &size, |b, &s| {
b.iter(|l minus_one(1));
);
}
criterion_group! (benches, minus_one_benchmark);
criterion_main!(benches);

VANDAM.COM, 2025

m Run the benchmark using: cargo bench
® Reports are in target/criterion/report

©PASCALVANDAM.COM, 2025 282

RUST MODULE SYSTEM

To make projects/code manageable, Rust provides:
m Crates
m Packages
m Modules
m Paths

©PASCALVANDAM.COM, 2025 284

Crates in Rust:
m are the smallest amount of code for Rust
m are a single source code file

® can contain modules
m come in two types

® Binary crate
e Library crate

©PASCALVANDAM.COM, 2025 285

Rust binary crates:
B are programs you can compile
m have a main() function
m are create using cargo create <crate-name>

code/crates-1/src/main.rs

// Example of a binary crate

fn main() {
println!("Hello, world!");

TGO W N =

VANDAM.COM, 2025

Rust library crates:
m don’t have a main() function
m do not compile into an executable
m contain functionaly to be shared with multiple projects
m can be created using cargo new <name> --1ib
When Rustaceans mention crate, they mean library crates.

> code/crates-2/src/lib.rs <>

pub fn add(left: usize, right: usize) —> usize {
left + right
}

#[cfg(test)]
mod tests {
use super::¥;

#[test]
fn it_works() {

O VOO U A WN -

3

VANDAM.COM, 2025

A Rust package:
m is bundle of one or more crates
m contains a Cargo.toml file
m contains 1 or many binary crates
m contains only one library crate

©PASCALVANDAM.COM, 2025 288

A rust module
m give your code structure
m control visibility of the items in them (pub/priv)
m contains items like
® Functions, Types, Traits, Impl blocks

® Macros, Constants, Statics
® Imports, modules, Ext blocks and crates etc.

code/shaper/src/shapes.rs

use std::f64::consts::PI;
pub struct Circle { pub radius: fé64 }

impl Circle {
pub fn perimeter(&self) — fé4 {
self.radius*2.0*PI

WO U WN

45

LVANDAM.COM, 2025

=

QOO U WN =

Paths in rust:
m Absolute path to an item
m Relative path to an item

<>

code/crates-4/src/lib.rs

<>

mod front_of_house {
pub mod hosting {
pub fn add_to_waitlist() {}
}
pub fn eat_at_restaurant() {
// Absolute path
crate:: front_of_house::hosting::add_to_waitlist();
\. J

VANDAM.COM, 2025

RUST THREADS

Error types:
m Std only supports 1:1 model
m Green threads (N:M) available in external crates

©PASCALVANDAM.COM, 2025

Threads are created using the thread::spawn() function
m Functions
m Closures

<> code/concurrency-1/src/main.rs <>
1 use std::thread;
2 use std::time::Duration;
3
4
5 fn main() {
6 thread::spawn(]| {
7 for n in 1..10
8 printlnt("Spawned thead nr: {}",n);
9 thread::sleep(Duration::from_millis(1));
10 3
11 B;
12
13 for n in 1..5 {
14 printlnt("Main thead nr: {}",n);
15 thread::sleep(Duration::from_millis(1));

©PASCALVANDAM.COM, 2025

To make sure all threads are executed before the main thread exits use join

<S> code/concurrency-2/src/main.rs
1 use std::thread;
2 use std::time::Duration;
3
4
5 fn main() {
6 let joinhandle = thread::spawn(]| {
7 for n in 1..10 {
8 println!("Spawned thead nr: {}",n);
9 thread::sleep(Duration::from_millis(1));
10 }
11 b;
12
13 for n in 1..5 {
14 println!("Main thead nr: {}",n);
15 thread::sleep(Duration:: from_ m11113(1)),
16 })
\
AN

©PASCALVANDAM.COM, 2025

o

QWO U R WN -

<> code/concurrency-3/src/main.rs

use std::thread;
use std::time::Duration;

fn main() {

let v1 = vec![1,2,3,4];

// let joinhandle = thread::spawn(move [| {

let joinhandle = thread::spawn(move || {
for n in 1..16 {

<>

\

LVANDAM.COM, 2025

<S> code/concurrency-4/src/main.rs

1 use std::sync::mpsc;
2 use std::thread;
3
4 fn main() {
5 let (tx, rx) = mpsc::channel();
6
7 thread::spawn(move || {
8 let m = String::from("Message in a hottle");
9 tx.send(m).unwrap();
10 1;
11
12 let recv = rx.recv().unwrap();
13 // let recv = rx.try_recv().unwrap();
14 println!("Fetching bottle with content: {}",recv);
15 }
. J

e
)&

©PASCALVANDAM.COM, 2025 296

<S> code/concurrency-5/src/main.rs

1 use std::sync::mpsc;

2 use std::thread;

3 use std::time::Duration;

4

5 fn main() {

6 let (tx, rx) = mpsc::channel();

7

8 thread::spawn(move || {

9 let msgs = vec!["I", "sent","an","S0S","to", " the", world"];
10

11 for m in msgs {

12 tx.send(m).unwrap();

13 thread::sleep(Duration::from_secs(1));

14

15 b;

16

17 for recv in rx {

18 println!("Fetching bottle with content: {}",recv);
19 }
20 1}

©PASCALVANDAM.COM, 2025

RUST ASYNC

Async/Await in Rust provides Cooperative multitasking
m Async like sync programming
m Similar to async/await & promises in JavaScript
m Difference: futures are lazy in Rust

©PASCALVANDAM.COM, 2025

m Async
E Await
m Futures (zero-cost)

©PASCALVANDAM.COM, 2025

Jun

OO TDU = WN =

Async transforms a Rust codeblock into a kind of statemachine that implement the
Future trait:

m Async Fn
m Async Block
m Both return the value implementing a Future trait

<> code/async-3/src/main.rs <S>

async fn add(a: u32, b: u32) - u32 {
a+h

}

fn main() {
let result: impl Future<Qutput: u32> = add(2, 3);
async {
// Code

VANDAM.COM, 2025

Await is the mechanism to run a Future.
m Asynchrononously (a)waits for the future to complete
m Not ready -> Yields the current thread
m Can only be used in async fn or async block

<> code/async-4/src/main.rs <S>

async fn add(a: u32, b: u32) - u32 {

1

2 a+h

3 3

4

5| fn main() {

6 let result: impl Furute<Output=u32> = add(2, 3);
7 async {

8

9 // Waiting for the Future to complete (async)
10 let data: u32 = result.await;

11 // Rest of the code

VANDAM.COM, 2025

Futures in Rust
m Zero cost (Polling)
m Created by invoking async fn

m Invoking does not schedule the fn -> lazy
®m An await on the future

® Executor takes the future
e Drive/run’s it to completion
e Calling poll| when progress can be made

©PASCALVANDAM.COM, 2025

=
O OO U WN =

e
DU W N

<>

use futures::executor::block_on;
use async_std::task;
use std::time::Duration;

async fn func_1() {
for i in 1..10 {
print!("f1 ");
if i=56{
task::sleep(Duration:: from_secs(2)).await;

}
}

async fn func_2() {
for i in 1..10 {

ANDAM.COM, 2025

/src/main.rs

<P

1 use std::{thread, time};

2| use tokio::time::{sleep, Duration};

3 use rand::prelude::*;

4 #[tokio::main]

5

6| async fn main() {

7 my_afunc() .await;

8

9

10| async fn my_afunc() {

11 println!("Async func");

12 let s1 = read_from_db().await;

13 println!("{}",s1);

14 let s2 = read_from_db().await;

15 println!("{}",s2);

16 }

17

18 async fn read_from_db() — String {

19 let mut rng = rand::thread_rng();
20 let delay = rng.gen_range(0..5);
21 println!("Sleeping for {}s",delay);
22 sleep(Duration::from_millis(delay*1060)).await; Q g
23 "DB data".to_owned()

24| } 7N\)

OPA ANDAM.COM, 2025 305

m Rust does not provide execution context

m No runtime, no async
m Popular choices:

* tokio

® async-std

® smol

©PASCALVANDAM.COM, 2025 306

e i el
COTDUE WNFOO©®IO® U

.

> code/async-7/src/main.rs

async fn main() {
let mut handles = vec![];

for i in 0..2 {
let handle = tokio::spawn(async move {
my_afunc(i).await;

H
handles.push(handle)

for handle in handles {
handle.await.unwrap();
}
}

ANDAM.COM, 2025

CONTAINERIZED RUST

Demo
m Non-recoverable errors
m Recoverable errors

©PASCALVANDAM.COM, 2025

